a/\(\sqrt{-2x+3}\) b/\(\sqrt{\frac{2}{x^2}}\) c/\(\sqrt{\frac{3}{1-2x}}\)d/\(\sqrt{\frac{-3}{3x+5}}\)
tìm điều kiện xác định
các bạn giúp mình
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Tìm điều kiện xác định của các bt:
a) \(\sqrt{-x^4-2}\)
b)\(\sqrt{x^3-1}\)
c)\(\sqrt{\frac{-3x^2}{x^2-7}}\)
d)\(\sqrt{\frac{5}{\left(2x+6\right)^2}}\)
e)\(\sqrt{\frac{3}{x^4+2x^2+3}}\)
a)biểu thức có nghĩa khi :
-x4 -2 > 0 <=> - x4 > 2
tìm điều kiện xác định của biểu thức:
\(a)\frac{6x}{-\sqrt{x+7}}-\frac{3}{-5x-4}+\frac{\sqrt{x}}{-3x+2}\)
\(b)\frac{5-\sqrt{x}}{x+4}+\frac{\sqrt{x-2}-3}{-2x-10}\)
\(c)\frac{\sqrt{6x}}{-x-3}-\frac{4x}{2x+3}\)
\(d)\frac{\sqrt{2x-7}}{3x-4}-\frac{\sqrt{6x}}{x-3}+3x-1\)
a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)
c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)
d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)
Tìm điều kiện của x để biểu thức xác định:ở biểu thức A có 2 dấu căn nha
A=\(\frac{\sqrt{x-2\sqrt{x-1}}}{x-1}\)
B=\(\sqrt{\frac{1-3x}{2x^3-x^2+2x-1}}\)
Bài 2:Tính:
A=\(\sqrt{227-30\sqrt{2}}+\sqrt{12^3+22\sqrt{2}}\)(Đề bài sai thì sửa lại giúp mình rồi trả lời nha)
Tìm Điều Kiện Xác Định
a) 3\(\sqrt{3-x}\)+\(\sqrt{x^2-9}\)
b) \(\frac{2x}{\sqrt{-x-2}}\)
c) \(\sqrt{\frac{1}{x^2+2x+1}}\)
GIÚP MÌNH VS MAI MÌNH NỘP BÀI RỒI
a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)
b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)
c) \(x^2+2x+1=\left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Câu 1 : Tính giá trị của biểu thức với điều kiện cho trước
cho biểu thức :
A= \(\left(\frac{1}{2\sqrt{x}-3}-\frac{3}{2\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right):\left(\frac{16\sqrt{x}-21}{2x+\sqrt{x}-3}\right)\)
a , tính điều kiện để a được xác định
b, rút gọn A
c, Tìm giá trị của x để A có giá trị âm
Giúp mình câu này với
Tìm điều kiện có nghĩa của biểu thức sau
a) \(\sqrt{1-3x}\)
b) \(\sqrt{\frac{-3}{2x-5}}\)
c) \(\sqrt{3x+2}+\sqrt{-2x+3}\)
d) \(\frac{x-5}{\sqrt{-4x}}\)
e) \(\sqrt{x-2}+\frac{1}{x-3}\)
f) \(\sqrt{-x^2+4x-4}\)
g) \(\sqrt{\frac{-2x^2}{3x+2}}\)
\(a,\sqrt{1-3x}\)
\(< =>1-3x\ge0\)
\(3x\le1\)
\(x\le\frac{1}{3}\)
\(b,-3< 0\)
\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)
\(x< \frac{5}{2}\)
\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)
\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)
\(d,\frac{x-5}{\sqrt{-4x}}\)
\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)
\(-4x>0\)
\(x< 0\)
\(e,\sqrt{x-2}+\frac{1}{x-3}\)
\(\sqrt{x-2}\ge0;x-3\ne0\)
\(x\ge2;x\ne3\)
\(f,\sqrt{-\left(x-2\right)^2}\)
\(\sqrt{-\left(x-2\right)^2}\ge0\)
\(-\left|x-2\right|\ge0\)
\(-\left|x-2\right|\le0\)
lên chỉ có 1 nghiệm duy nhất là
\(x-2=0< =>x=2\)
\(g,\sqrt{\frac{-2x^2}{3x+2}}\)
\(-2x^2\le0\)
\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)
\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)
a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)
\(\Leftrightarrow1-3x\ge0\)
\(\Leftrightarrow-3x\ge-1\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)
\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)
\(\Leftrightarrow2x-5>0\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\frac{5}{2}\)
c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)
\(\Leftrightarrow3x+2-2x+3\ge0\)
\(\Leftrightarrow x+5\ge0\)
\(\Leftrightarrow x\ge-5\)
d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)
\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)
\(\Leftrightarrow-2x>0\)
\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)
f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)
\(\Leftrightarrow-x^2+4x-4\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge0\)
không có z thỏa mãn
g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(\Leftrightarrow3x+2>0\)
\(\Leftrightarrow3x>-2\)
\(\Leftrightarrow x>\frac{-2}{3}\)
@Cừu
Bài 1: Tìm điều kiện xác đinh của các biểu thức sau
a, A=\(\frac{x-1}{\sqrt{x-1}}+\sqrt{2x+5}\)
b, B=\(\frac{\sqrt{-x}}{x^2-3}-2019\)
Bài 2: Rút gọn
a, A=\(\frac{15-9\sqrt{2}}{5\sqrt{5}-3\sqrt{10}}-\sqrt{\frac{16}{5}}-\frac{1}{\sqrt{10}+\sqrt{5}}\)
b, B=\(\frac{\sqrt{145\sqrt{154}}-\sqrt{9-\sqrt{77}}}{1-\frac{1}{\sqrt{2}}}\)
A = \((\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1})\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Hãy tìm điều kiện xác định và rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của biểu thức A
c) Tính giá trị của A tại x= \(\frac{18\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)