Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Đinh Thị Ngọc Anh
Xem chi tiết
Nguyên :3
Xem chi tiết
Kiều Chinh
Xem chi tiết
Nguyễn Ngân
6 tháng 8 2017 lúc 19:46

NHỚ K MK NHA!!!

Hoàng Minh Hoàng
6 tháng 8 2017 lúc 20:00

a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5

Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).

b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40

Dấu= xảy ra khi y=10.

c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1

Dấu= xảy ra khi x=0

Dat Tran
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Nguyễn Tuấn
27 tháng 8 2016 lúc 18:59

không có điều kiện à

Cody_Uni5
Xem chi tiết
Lê Ng Hải Anh
30 tháng 6 2019 lúc 15:19

\(y=\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)

Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm

Với: \(y=0\) thì x = -1/2

Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)

 \(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)

\(\Leftrightarrow-2y^2+y+1\ge0\)

\(\Leftrightarrow2y^2-y-1\le0\)

\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Vậy: Min y = -1/2 và Max y = 1

=.= hk tốt!!

Witch Rose
30 tháng 6 2019 lúc 15:24

\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)

Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)

Nguyễn Hoàng Tiến
Xem chi tiết
hanvu
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50