a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Rút gọn: \(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}\)
cho biểu thức
p=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\)
a)rút gọn biểu thức
b)tìm x dể p =8/9
c)tìm Max,Min của p
Rút gọn:
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\) (với x > 0, y > 0)
b.\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( với x > 0 )
c. \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( với x > -2)
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
cho biểu thức
\(p=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\) với x>= 0
a)rút gọn biểu thức
b)tìm x để P=\(\frac{8}{9}\)
c)tìm Max,Min của P
Cho \(x;y>0\) và \(2x>y\) .CMR: \(\left(\frac{1}{x}+2\right)^2.\left(\frac{2}{y}-\frac{1}{x}\right).\frac{2y-1}{y}< =\frac{81}{8}\)
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1