a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1
Cho x, y, z > 0. Cmr: \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z+6\)
Rút gọn: \(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}\)
Giải phương trình:
\(\frac{x^2}{2}-\frac{y^2}{2}+x+2y+\frac{1}{2}=\sqrt{\left(x^2+2x+3\right)\left(-y^2-4y-2\right)}\)
Cho biểu thức:
\(H=\frac{x^2y^2}{\left(x+1\right)\left(y-1\right)}-\frac{x^2}{\left(x+y\right)\left(y-1\right)}-\frac{y^2}{\left(x+y\right)\left(x+1\right)}\)
a)Rút gọn H
b)Tìm các cặp số nguyên (x;y) sao cho giá trị của H=6
Help me plz =((
Cho x,y,z không âm và (x+z)(y+z) =1
Chứng minh: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(x+z\right)^2}+\frac{1}{\left(y+z\right)^2}\ge4\)
cho ba số x, y, z thỏa mãn:
xy + yz + zx +1
Tính:
\(S=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Giai phương trình : \(\left(I\right)\begin{cases}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{cases}\)