Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Doraemon N.W
Xem chi tiết
Trần Phương Vy
Xem chi tiết
alzxcxccxc
Xem chi tiết
Witch Rose
4 tháng 7 2019 lúc 20:30

a)Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\left(a,b,c,d\ne0\right)\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(c\ne d,a\ne b\right)\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

b)a)Áp dụng tính chất của dãy tỉ số bằng nhau: 

\(\frac{a+2019}{a-2019}=\frac{b+2020}{b-2020}\left(đk:a\ne\pm2019,b\ne\pm2020\right)\)\(\Leftrightarrow\frac{a+2019}{b+2020}=\frac{a-2019}{b-2020}=\frac{a+2019+a-2019}{b+2020+b-2020}=\frac{\left(a+2019\right)-\left(a-2019\right)}{\left(b+2020\right)-\left(b-2020\right)}=\frac{a}{b}=\frac{2019}{2020}\left(a,b\ne0\right)\left(đpcm\right)\)

 
Thommas Tonny
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 21:15

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

mà \(a+b+c\ne0\)

nên \(a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)

\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)

Thi Bùi
Xem chi tiết
Xyz OLM
21 tháng 12 2020 lúc 21:20

Ta có : a3 + b3 + c3 = 3abc

=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0

=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

=> a2 + b2 + c2 - ab- ac - bc = 0

=> 2(a2 + b2 + c2 - ab- ac - bc) = 0

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0

=> (a - b)2 + (b - c)2 + (a - c)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)

Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)

Khách vãng lai đã xóa
Linh Vũ Đào Mai
Xem chi tiết
Trần Thanh Phương
4 tháng 2 2020 lúc 15:22

\(Q=\frac{a}{b+2020-a}+\frac{b}{c+2020-b}+\frac{c}{a+2020-c}\)

\(Q=\frac{a}{b+a+b+c-a}+\frac{b}{c+a+b+c-b}+\frac{c}{a+a+b+c-c}\)

\(Q=\frac{a}{2b+c}+\frac{b}{2c+a}+\frac{c}{2a+b}\)

Áp dụng BĐT Cauchy-Schwarz:

\(Q=\frac{a^2}{a\cdot\left(2b+c\right)}+\frac{b^2}{b\cdot\left(2c+a\right)}+\frac{c^2}{c\cdot\left(2a+b\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\left(ab+bc+ca\right)}\ge\frac{3\cdot\left(ab+bc+ca\right)}{3\cdot\left(ab+bc+ca\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2020}{3}\)

Khách vãng lai đã xóa
Trần Quang Hưng
4 tháng 2 2020 lúc 14:37

2020a hay là 2020-a vậy???

Khách vãng lai đã xóa
Trần Quang Hưng
4 tháng 2 2020 lúc 14:39

Nếu đề như vậy thì thay 2020 vô các mẫu đc

\(\frac{a}{2b+a}=\frac{a^2}{2ab+a^2}\)

Tương tự sau đó cosi swat là ra nha

Khách vãng lai đã xóa
Nguyễn Đoàn Công Hiếu
Xem chi tiết
Lang Hoa
Xem chi tiết
☆MĭηɦღAηɦ❄
9 tháng 4 2020 lúc 15:28

\(a^{2020}+b^{2020}+c^{2020}=a^{1010}b^{1010}+b^{1010}c^{1010}+c^{1010}a^{1010}\)

\(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}-a^{1010}b^{1010}-b^{1010}c^{1010}-c^{1010}a^{1010}=0\)

\(\Leftrightarrow2a^{2020}+2b^{2020}+2c^{2020}-2a^{1010}b^{1010}-2b^{1010}c^{1010}-2a^{1010}c^{1010}=0\)

\(\Leftrightarrow\left(a^{2020}-2a^{1010}b^{1010}+b^{2020}\right)+\left(b^{2020}-2b^{1010}c^{1010}+c^{2020}\right)+\left(c^{2020}-2a^{1010}c^{1010}+a^{2020}\right)=0\)

\(\Leftrightarrow\left(a^{1010}-b^{1010}\right)^2+\left(b^{1010}-c^{1010}\right)^2+\left(c^{1010}-a^{1010}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a^{1010}-b^{1010}\right)=0\\b^{1010}-c^{1010}=0\\c^{1010}-a^{1010}=0\end{cases}}\Leftrightarrow a^{1010}=b^{1010}=c^{1010}\Leftrightarrow\pm a=\pm b=\pm c\)

Rồi thay :> Còn thay kiểu nào thì mình cũng hong biết :">

Khách vãng lai đã xóa
Trần Huỳnh Thanh Long
Xem chi tiết
alibaba nguyễn
28 tháng 11 2019 lúc 8:26

Ta chứng minh bổ đề:

Với x,y,z dương thì:

\(8\left(x+y+z\right)\left(xy+yz+zx\right)\le9\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow x\left(y-z\right)^2+y\left(z-x\right)^2+z\left(x-y\right)^2\ge0\)(đúng)

Quay lại bài toán ta có:

\(A^{2020}=\left(\sqrt[2020]{\frac{a}{a+b}}+\sqrt[2020]{\frac{b}{b+c}}+\sqrt[2020]{\frac{c}{c+a}}\right)^{2020}\)

\(=\left(\sqrt[2020]{\frac{a\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}+\sqrt[2020]{\frac{b\left(b+a\right)}{\left(b+c\right)\left(b+a\right)}}+\sqrt[2020]{\frac{c\left(c+b\right)}{\left(c+a\right)\left(c+b\right)}}\right)^{2020}\)

\(\le\left(1+1+1\right)^{2018}.2.\left(a+b+c\right).\left(\frac{a}{\left(a+b\right)\left(a+c\right)}+\frac{b}{\left(b+c\right)\left(b+a\right)}+\frac{c}{\left(c+a\right)\left(c+b\right)}\right)\)

\(=3^{2018}.\frac{4\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\le3^{2018}.\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3^{2020}}{2}\)

\(\Rightarrow A\le\frac{3}{\sqrt[2020]{2}}\)

Khách vãng lai đã xóa