Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN THÔNG
Xem chi tiết
nguyễn trà giang
Xem chi tiết
Nguyễn Thị Thùy Dương
5 tháng 9 2016 lúc 17:34

\(a+b=1\ge2\sqrt{ab}\Rightarrow-ab\ge\frac{1}{4}\)

\(A=a^3+b^3=\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)=1-3ab\ge1+\frac{3}{4}=\frac{7}{4}\)

A min = 7/4 khi a=b = 1/2

Lê Hà Phương
5 tháng 9 2016 lúc 17:33

a3+b3=(a+b)(a2-ab+b2)=1*(a2-ab+b2)=a2+b2-ab

Ta có: a2>=0(với mọi a)

           b2>=0(với mọi b)

=>a2+b2>=0(với mọi a,b)

=>a2+b2-ab>=-ab(với mọi a,b)

hay a3+b3>=-ab

Do đó, GTNN của a3+b3 là -ab

Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Lê Hoàng Hiếu
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 23:25

\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\ge\dfrac{1}{a^3+b^3}+\dfrac{4}{a^2b+ab^2}\)

\(S\ge\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b+ab^2}+\dfrac{1}{a^2b+ab^2}+\dfrac{1}{a^2b+ab^2}\right)+\dfrac{1}{ab\left(a+b\right)}\)

\(S\ge\dfrac{16}{a^3+b^3+3a^2b+3ab^2}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{4}.\left(a+b\right)}=\dfrac{20}{\left(a+b\right)^3}\ge20\)

\(S_{min}=20\) khi \(a=b=\dfrac{1}{2}\)

Nguyễn Tuấn Kiệt
Xem chi tiết
Xyz OLM
12 tháng 11 2019 lúc 21:27

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

Khách vãng lai đã xóa
nglan
Xem chi tiết
oOo WOW oOo
Xem chi tiết
Trần Thanh Phương
1 tháng 5 2019 lúc 16:43

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Trần Thanh Phương
1 tháng 5 2019 lúc 16:48

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

Incursion_03
1 tháng 5 2019 lúc 17:20

\(M=\frac{4x+1}{x^2+3}\)

\(\Leftrightarrow Mx^2+3M=4x+1\)

\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)

*Nếu M = 0 thì x =  -1/4

*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                                                     \(\Leftrightarrow4-M\left(3M-1\right)\ge0\)

                                                    \(\Leftrightarrow4-3M^2+M\ge0\)

                                                     \(\Leftrightarrow-1\le M\le\frac{4}{3}\)

•长ąŦ๏Ʀเ•
Xem chi tiết
dia fic
Xem chi tiết