Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai linh
Xem chi tiết
Nguyễn Minh Quang
14 tháng 12 2020 lúc 11:35

giả sử (x,y) là nghiệm thỏa mãn đề bài, do đó

\(\hept{\begin{cases}3x+my=10\\x-y=5\\5x+2y=32\end{cases}}\)từ hai phương trình cuối ta có hệ \(\hept{\begin{cases}x-y=5\\5x+2y=32\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

thay x=6 y=1 vào phương trình đầu tiên ta có

\(3.6+m.1=10\Leftrightarrow m=4\)

Khách vãng lai đã xóa
Cô gái lạnh lùng
Xem chi tiết
Tú Lê Anh
23 tháng 3 2018 lúc 21:14

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

Tú Lê Anh
23 tháng 3 2018 lúc 21:22

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
28 tháng 6 2023 lúc 6:44

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

Nguyễn thành Đạt
28 tháng 6 2023 lúc 14:24

Chị độc giải sau khi em biết làm thôi à.

Aduvjp
Xem chi tiết
Sahara
24 tháng 4 2023 lúc 20:45

\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:

\(y-1\)\(1\)\(5\)\(-1\)\(-5\)
\(x-2\)\(5\)\(1\)\(-5\)\(-1\)
\(y\)\(2\)\(6\)\(0\)\(-4\)
\(x\)\(7\)\(3\)\(-3\)\(1\)

Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:45

=>xy-x-2y=3

=>x(y-1)-2y+2=5

=>(x-2)(y-1)=5

=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)

Nguyễn Minh Anh
Xem chi tiết
Phạm Thị Thùy Linh
11 tháng 3 2020 lúc 12:11

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)

* Giải hệ theo m :

\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)

Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)

Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)

Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)

\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)

Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)

Giải xong muốn gãy tay :v

Khách vãng lai đã xóa
Thiên Thương Lãnh Chu
Xem chi tiết
missing you =
24 tháng 5 2021 lúc 20:08

\(\left\{{}\begin{matrix}x+2y=5m-1\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}2x+4y=10m-2\\-2x+y=2\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}5y=10m\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=2m\\x=m-1\end{matrix}\right.\)

=>\(\sqrt{x}+\sqrt{y}=\sqrt{2}\left(1\right)\) 

=>\(\sqrt{m-1}+\sqrt{2m}=\sqrt{2}\) (\(m\ge1\))

\(< =>\left(\sqrt{m-1}\right)^2=|\left(\sqrt{2}-\sqrt{2m}\right)^2|\)

<=>\(m-1=\left[\sqrt{2}.\left(1-\sqrt{m}\right)\right]^2< =>m-1=|2.\left(1-\sqrt{m}\right)^2|\)

<=>\(m-1=|2\left(1-2\sqrt{m}+m\right)|=\left|2-4\sqrt{m}+2m\right|\)

với \(\left|2-4\sqrt{m}+2m\right|=2-4\sqrt{m}+2m< =>m\le1\)

ta có pt:

<=>\(m-1-2+4\sqrt{m}-2m=0\)

\(< =>-m+4\sqrt{m}-3=0< =>-\left(m-4\sqrt{m}+3\right)=0\)

<=>\(m-4\sqrt{m}+3=0< =>\left(\sqrt{m}-3\right)\left(\sqrt{m}-1\right)=0\)

<=>\(\left[{}\begin{matrix}\sqrt{m}-3=0\\\sqrt{m}-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}m=9\left(loai\right)\\m=1\left(TM\right)\end{matrix}\right.\) 

nếu \(|2-4\sqrt{m}+2m|=-2+4\sqrt{m}-2m< =>m\ge1\)

=>\(-2+4\sqrt{m}-2m=m-1< =>3m-4\sqrt{m}+1=0\)

<=>\(3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{1}{3}\right)=3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{4}{9}-\dfrac{4}{9}+\dfrac{1}{3}\right)=0\)

<=>\(\left(\sqrt{m}-1\right)\left(\sqrt{m}-\dfrac{1}{3}\right)=0\)=>\(\left[{}\begin{matrix}\sqrt{m}-1=0\\\sqrt{m}-\dfrac{1}{3}=0\end{matrix}\right.< =>\left\{{}\begin{matrix}m=1\left(TM\right)\\m=\dfrac{1}{3}\left(loai\right)\end{matrix}\right.\)

vậy m=1 thì pt đã cho có 2 nghiệm (x,y) thỏa mãn

\(\sqrt{x}+\sqrt{y}=\sqrt{2}\)

missing you =
24 tháng 5 2021 lúc 20:32

chỗ cuối sửa thành x=1/9 (loại ) hộ :((

trinh thi hang
Xem chi tiết
Nguyễn Vũ Thảo My
Xem chi tiết
ngo quoc
Xem chi tiết