tính số đo góc các góc sau ( làm tròn đến độ )
sin a=0,4
cos b=0,28
tan c=2,5
Bài 1:
a) Giải ΔMNP vuông tại M biết NP=4cm, góc N=35o. (Số đo góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số thập phân thứ ba).
b) Biết 0o<α<90o. Thu gọn biểu thức sau: A=\(\dfrac{2cos^2\alpha-1}{sin\alpha+cos\alpha}\)
c) Sắp xếp các tỉ số lượng giác theo giá trị tăng dần:
sin 35o; cos25o; sin60o; sin30o; cos40o
a, Ta có tổng các góc bằng 180o
=> \(\widehat{P}=55^o\)
- Áp dụng tỉ số lượng giác :
\(\cos35=\dfrac{MN}{4}\)
\(\Rightarrow MN\approx3,277cm\)
\(\sin35=\dfrac{MP}{4}\)
\(\Rightarrow MP\approx2,294cm\)
b, Ta có : \(A=\dfrac{2\cos^2a-\cos^2a-\sin^2a}{\sin a+\cos a}=\dfrac{\left(\sin a+\cos a\right)\left(\cos a-\sin a\right)}{\sin a+\cos a}\)
\(=\cos a-\sin a\)
c, \(sin30< sin35< cos40< sin60< cos25\)
Cho Δ ABC có AB=30cm, AC=40cm, BC=50cm
a) Chứng minh ΔABC là tam giác vuông
b) Tính sin góc B, tg góc C, và số đo góc B và góc C
c) Vẽ đường cao AH. Tính các độ dài AH, BH, HC
d) Vẽ đướng phân giác AD của Δ ABC. Tính độ dài DB, DC
e) Đường thẳng vuông góc AB tại B cắt AH tại E. Tính độ dài BE
(SỐ ĐO GÓC LÀM TRÒN ĐẾN PHÚT, ĐỘ DÀI CÁC ĐOẠN THẲNG LÀM TRÒN ĐẾN CHỮ SỐ THẬP PHÂN THỨ 2 )
Cho tam giác ABC có BC=16cm,AB=20cm,AC=12cm.
a,CM tam giác ABC vuông.
b,Tính sin góc A,tg góc B và số đo góc B,góc A.
c,Vẽ đường cao CH.tính CH,BH,HA.
d,Vẽ đường phân giác CD của tam giác ABC.Tính DB,DA.
e,Đường thẳng vuông góc với BC tại B cắt tia CH tại K.Tính BK.
(số đo góc làm tròn đến phút,độ dài các đoạn thẳng làm tròn đến chữ số thập phân thứ hai)
mn giúp em làm ý e vs ạ,thanks mn nhiều ^^
Cho tam giác ABC vuông tại A có AH là đường cao. Biết BH 7,2cm và HC 12,8cm . a) Tính độ dài các đoạn AH , AC . b) Gọi I là trung điểm BC . Tính số đo góc ACB và góc IAC (làm tròn đến phút). c) Chứng minh: sin 2C = 2sinC.cosC
Có góc nhọn \(x\) nào mà :
(các kết quả tính góc được làm tròn đến phút và các kết quả tính độ dài và tính các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ tư)
a) \(\sin x=1,0100\)
b) \(\cos x=2,3540\)
c) \(tgx=1,6754\)
Không có góc nhọn nào như vậy bởi nếu x là góc nhọn thì \(\sin x< =1;\cos x< =1\)
Cho tam giác ABC vuông tại A biết sin C = 3/5 số đo góc C làm tròn đến độ là
\(sinC=\dfrac{3}{5}\Rightarrow\widehat{C}\approx37^o\)
Cho AABC vuông tại A có AB = 12cm BC = 20cm và AH là đường ca a) Tính độ dài các cạnh AH, BH và CH của AABC. b) Giải tam giác vuông trên (số đo của góc làm tròn đến độ). c) Chứng minh rằng: AB. cos B + AC cosC = BC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+12^2=20^2\)
=>\(AC^2=400-144=256\)
=>\(AC=\sqrt{256}=16\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)
b: XétΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-37^0=53^0\)
c: \(AB\cdot cosB+AC\cdot cosC\)
\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
Dùng bảng lượng giác hoặc máy tính bỏ túi để tìm góc nhọn x (làm tròn kết quả đến độ ), biết rằng:
a) sin x = 0,3495; b) cos x = 0,5427; c) tg x = 1,5142; d) cotg x = 3,163
a) Dùng bảng sinx ≈ 0,3495 => x ≈ 20o
- Cách nhấn máy tính:
b) x ≈ 57o
- Cách nhấn máy tính:
c) x ≈ 57o
- Cách nhấn máy tính:
d) x ≈ 18o
- Cách nhấn máy tính:
Dùng bảng lượng giác hoặc máy tính bỏ túi để tìm :
(các kết quả tính góc được làm tròn đến phút và các kết quả tính độ dài và tính các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ tư)
a) \(\sin x=0,5446\)
b) \(\cos x=0,4444\)
c) \(tgx=1,1111\)
a: \(x=33^0\)
b: \(x=63^036'\)
c: \(x=48^0\)