\(C=x^3+y^3+3xy\) biet x+y\(=\) 2
\(C=x^3+y^3+3xy\) biet x+y \(=\)2
\(x+y=2\Rightarrow y=2-x\)
\(C=x^3+\left(2-x\right)^3+3x\left(2-x\right)\)
\(=x^3+8-12x+6x^2-x^3+6x-3x^2\)
\(=3x^2-6x+8\)
Ko rút gọn được nữa
Nếu đề là \(C=x^3+y^3+6xy\) thì rút được \(C=8\)
tính x+y biet x^3+3xy^2 khác 250 và y^3+3x^2y=262
thanks
tính gia tri bieu thuc x^3 - y^3 -2x^2 - 2y^2 + 3xy.(x+y) -4xy + 3.(x+y) +10 biet x+y=5
CMR:
a)X^2+y^2=(x+y)- 2xy
b)X^3+y^3=(x+y)^3-3xy(x-y)
c)X^3-y^3=(x-y)^3+3xy(x-y)
Câu a) sai đề em ơi
Đề đúng là: x2 + y2 = (x + y)2 - 2xy
Giải theo đúng đề nè:
a) x2 + y2
= x2 + y2 + 2xy - 2xy
= (x + y)2 - 2xy
b) Đề cũng sai. Đề đúng phải là: x3 + y3 = (x + y)3 - 3xy(x + y)
Giải đề đúng là:
x3 + y3 = x3 + y3 + 3x2y + 3xy2 - 3x2y - 3xy2
= (x + y)3 - 3xy(x + y)
c) x3 - y3 = x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2
= (x - y)3 + 3xy(x - y)
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)
a) Cho x + y = 1. Tính A = x3 + y3 + 3xy
b) Cho x - y = 1. Tính B = x3 - y3 - 3xy
c) Cho x + y = 2 và x2 + y2 = 10. Tính C = x3 + y3
d) Cho x + y = 1. Tính D = x3 + y3 + 3xy. (x2 + y2) + 6x2y2. (x + y)
a) Ta có : \(\left(x+y\right)^3=1^3=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\) ( do x + y = 1 )
Ai giải đúng chỗ mình mình sẽ đánh giá 5 sao và đúng mình cần gấp lắm a)(x+2)(x^2-24+4)(x^3+8) b)(2x-1/2)(4x^2+x+1/4) c)(x^2+y)(x^2-y)+y^2+x^4 d)(x+3)(x^2-3x+9)-x^3 e)(3x+y)(9x^2-3xy+y^2)-26x^3 g)(x+3y)(x^2-3xy+9y^2)+(3x-y)(9x^2+3xy+y^2)
a) \(\left(x+2\right)\left(x^2-24+4\right)\left(x^3+8\right)\)
\(=\left(x+2\right)\left(x^2-20\right)\left(x^3+8\right)\)
\(=\left(x^3-20x+2x^2-40\right)\left(x^3+8\right)\)
\(=x^6+8x^3-20x^4+160x+2x^5+16x^2-40x^3-120\)
\(=x^6+2x^5-20x^4-32x^3+16x^2+160x-120\)
b) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(=8x^3+2x^2+\dfrac{1}{2}x-2x^2-\dfrac{1}{2}x-\dfrac{1}{8}\)
\(=8x^3-\dfrac{1}{8}\)
c) \(\left(x^2+y\right)\left(x^2-y\right)+y^2+x^4\)
\(=\left(x^2\right)^2-y^2+y^2+x^4\)
\(=x^4-y^2+y^2+x^4\)
\(=2x^4\)
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x^3\)
\(=\left(x+3\right)\left(x^2-3\cdot x+3^2\right)-x^3\)
\(=x^3+3^3-x^3\)
\(=27\)
e) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-26x^3\)
\(=\left(3x+y\right)\left[\left(3x\right)^2-3x\cdot y+y^2\right]-26x^3\)
\(=\left(3x\right)^3+y^3-26x^3\)
\(=27x^3+y^3-26x^3\)
\(=x^3+y^3\)
g) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=\left[x^3+\left(3y\right)^3\right]+\left[\left(3x\right)^3-y^3\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3+26y^3\)
a) Sửa đề:
(x + 2)(x² - 2x + 4)(x³ + 8)
= (x³ + 8)(x³ + 8)
= (x³ + 8)²
b) (2x - 1/2)(4x² + x + 1/4)
= (2x)³ - (1/2)³
= 8x³ - 1/8
c) (x² + y)(x² - y) + y² + x⁴
= (x²)² - y² + y² + x⁴
= 2x⁴
d) (x + 3)(x² - 3x + 9) - x³
= x³ + 3³ - x³
= 27
e) (3x + y)(9x² - 3xy + y²) - 26x³
= (3x)³ + y³ - 26x³
= 27x³ + y³ - 26x³
= x³ + y³
g) (x + 3y)(x² - 3xy + 9y²) + (3x - y)(9x² + 3xy + y²)
= x³ + (3y)³ + (3x)³ - y³
= x³ + 27y³ + 27x³ - y³
= 28x³ + 26y³
Cho x+y=2
Tính A=x^3+y^3+3xy*(x+y)
B=x^2+2xy+y^2+4
C=x^3+y^3+3xy*(x+y)+7*(x+y)
A=x^3 + y^3 + 3xy(x+y)
=x+3x^y+3xy^2+y^3
=(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
=(x+y)^2+4=4+4=8
C=x^3+y^3+3xy(x+y)+7(x+y)
=(x+y)^3+7(x+y)
=2^3+7.2
=8+14=22