Tìm x bít
(3x-7)^2009=(3x-7)^2007
\(^{\left(3x-7\right)^{2009}}=\left(3x-7\right)^{2007}\)
\(\Rightarrow\left(3x-7\right)^{2007}\left[\left(3x-7\right)^2-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x-7=1\\3x-7=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left(3x-7\right)\left(3x-8\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
tìm x bt \(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
Mình không hiểu ý bạn?
Tại sao (3x - 7)2009 = (3x - 7)2007.
Cùng cơ số mà khác mũ số sau bằng nhau được!
(3x-7)^2009=(3x-7)^2007
=> (3x-7)^2009-(3x-7)^2007=0
(=) (3x-7)^2007.[(3x-7)^2-1]=0
=>\(\left[{}\begin{matrix}\left(3x-7\right)^{2009}=0\\\left[\left(3x-7\right)^2-1\right]=0\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x=7\\3x-7=1\\3x-7=-1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x=8\\3x=6\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
học tốt
1/ Tìm x , biết :
( 3x - 7 )2009 = ( 3x - 7 )2007
2/ Tính :
\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}\)
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)
=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)
Vậy ...
2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)
Tìm các số nguyên x để giá trị của biểu thức sau là số nguyên:
\(A = {x-2 \over 3} \) \(B = {5 \over x+3}\) \(C = {x+1 \over x-2}\)
Tìm x biết \((3x - 7)^{2009}=(3x-7)^{2007}\)
Giải phương trình (tìm x):
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
b) \(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)
\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)
\(\Leftrightarrow x=2009\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)
\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)
Đặt \(t=6x^2+7x+2\) ta có:
\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)
Suy ra t rồi tìm đc x
VD:
INPUT: 4
OUTPUT:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:
\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý
b.
Đặt \(x+3=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)
\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)
\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)
Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.
c)Ta có: \(\left(x-3\right)\left(x-2\right)\left(x+1\right)=60\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x+1\right)=60\)
\(\Leftrightarrow x^3+x^2-5x^2-5x+6x+6-60=0\)
\(\Leftrightarrow x^3-4x^2+x-54=0\)
Bạn xem lại đề, nghiệm rất xấu
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
a)
PT \(\Leftrightarrow \frac{4x+2}{12}-\frac{3x-6}{12}=\frac{12-8x}{12}-\frac{12x}{12}\)
\(\Leftrightarrow 4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow 21x=4\Leftrightarrow x=\frac{4}{21}\)
b)
PT \(\Leftrightarrow \frac{30x+15}{20}-\frac{100}{20}-\frac{6x+4}{20}=\frac{24x-12}{20}\)
\(\Leftrightarrow 30x+15-100-6x-4=24x-12\Leftrightarrow -89=-12\) (vô lý)
Vậy pt vô nghiệm.
Câu 1: So sánh \(\sqrt{7}+\sqrt{5}\)và 7
Câu 2 : Tìm x biết: (3x-7)2007=(3x-7)2005
(3x - 7)2007 = (3x - 7)2005
=> (3x - 7)2007 - (3x - 7)2005 = 0
=> (3x - 7)2005 [(3x - 7)2 - 1] = 0
=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0
+) (3x - 7)2005 = 0
=> 3x - 7 = 0
=> 3x = 7
=> x = 7/3
+) (3x - 7)2 - 1 = 0
=> (3x - 7)2 = 1
=> 3x - 7 = 1 => 3x = 8 => x = 8/3
3x - 7 = -1 => 3x = 6 => x = 2
Vậy: x \(\in\){-7/3;8/3;2
3x-7=1=>x=2\(\frac{2}{3}\)
3x-7=0=>x=2\(\frac{1}{3}\)
Ai giúp vs !!!
\(a.\frac{3x-7}{5}=\frac{2x-1}{3}\\ b.\frac{4x-7}{12}-x=\frac{3x}{8}\\ c.\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\\ d.\frac{5x-8}{3}=\frac{1-3x}{2}\\ e.\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\\ f.\frac{x-1}{\frac{2}{5}}-3-\frac{3x-2}{\frac{5}{4}}-2=1\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
\(\Rightarrow\frac{4x-20-6x+54}{24}=\frac{5x-3+16}{8}\)
\(\Rightarrow\frac{-2x+34}{24}=\frac{5x+13}{8}\)
\(\Rightarrow-16x-272=120x+312\)
\(\Leftrightarrow-136x=584\Leftrightarrow x=\frac{-73}{17}\)