Ta có:(3x-7)2009=(3x-7)2007
\(\Rightarrow\)(3x-7)2009-(3x-7)2007=0
\(\Rightarrow\)(3x-7)2007 [(3x-7)2-1]=0
\(\Rightarrow\)\(\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-7=0\\\left(3x-7\right)^2=1\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x=7\\3x-7=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\3x=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{8}{3}\end{cases}}\)
Vậy......
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Rightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\Rightarrow\left(3x-7\right)^{2007}\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x-7=0\\3x-7=\pm1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x\in\left\{\frac{8}{3};2\right\}\end{cases}}\)