Tìm STN n, sao cho:
a,5n+7 chia hết cho n
b,n+9 chia hết cho n+4
c,2n+1 chia hết cho n-3
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
tìm STN n sao cho
(16-3a)chia hết cho (n+4)
(5n+2)chia hết cho(9-2n)
Phần đầu sai vì a với n chẳng liên quan đến nhau gì cả tran thi minh thuy ạ
a)Ta có: 16-3n chia hết cho n+4
=>-(16-3n) chia hết cho n+4
=>3n-16 chia hết cho n+4
=>(3n+12)-12-16 chia hết cho n+4
=>3(n+4)-28 chia hết cho n+4
Mà 3(n+4) chia hết cho n+4
=>28 chia hết cho n+4
=>n+4 thuộc Ư(28)={1;2;4;7;14;28}
=>n thuộc {-3;-2;0;3;10;24}
Mà n là STN
=>n thuộc {0;3;10;24}
b)Ta có: 5n+2 chia hết cho 9-2n
=>5n+2 chia hết cho -(9-2n)
=>(4n-18)+n+2+18 chia hết cho 2n-9
=>2(2n-9)+n+20 chia hết cho 2n-9
Mà 2(2n-9) chia hết cho 2n-9
=>(n+20) chia hết cho 2n-9
=>2(n+20)-(2n-9) chia hết cho 2n-9
=>49 chia hết cho 2n-9
=>2n-9 thuộc {1;7;49}
=>2n thuộc {10;16;58}
=>n thuộc {5;8;29}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
12. Tìm số tự nhiên n sao cho:
a) 5 chia hết cho n + 3.
b) n + 8 chia hết cho n + 3.
c) 4n – 5 chia hết cho 2n – 1.
d) 12 – n chia hết cho 8 – n.
\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)
tìm số tự nhiên n sao cho:
a) n + 3 chia hết cho n - 1
b) 4n + 3 chia hết cho 2n + 1
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
Ta có: 2n+1 chia hết cho 2n+1
nên 2.(2n+1) chia hết cho 2n+1
suy ra 4n+1 chia hết cho 2n+1
Ta có hiệu sau:
[(4n+3)-(4n+1)] chia hết cho 2n+1
(4n+3-4n-1) chia hết cho 2n+1
2 chia hết cho 2n+1
suy ra 2n+1 thuộc Ư(2)
Ư(2)={1;2}
suy ra 2n+1∈{1;2}
Ta có bảng sau:
2n+1 1 2
2n 0 1
n 0 1/2
Vậy n=0
a) để n+3⋮n-1
thì n-1+4⋮n-1
⇒4⋮n-1
⇒n-1∈Ư(4)={1;2;4}
\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=3\\n=5\end{matrix}\right.\)
vậy n∈{2;3;5}
b)để 4n+3⋮2n+1
thì 2.2n+1+2⋮2n+1
⇒2⋮2n+1
⇒2n+1∈Ư(2)={1;2}
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=\dfrac{1}{2}\end{matrix}\right.\)
vì n là số tự nhiên
⇒n=0
vậy n=0
(tick cho mk nha)
Tìm các số tự nhiên n sao cho:
a,n+3 chia hết cho n+1
b,2n+7 chia hết cho n +1
c,n+4 chia hết cho n-1
d,2n^2+5n+8 chia hết cho 2n+3
Tìm n thuộc N để :
a) 5n + 9 chia hết cho n + 1
b) 3n + 7 chia hết cho 2n + 1
c) n - 3 chia hết cho 15
d) n + 9 chia hết cho n +3
c, n-3 chia hết cho 15
=> n-3 thuộc Ư(15)={1;3;5;15}
=> n={4;6;8;18}
a, 5n+9 chia hết cho n+1
<=> 5n+1+9 chia hết cho n+1
Mà 5n+1 chi hết cho n+1
=> 9 chia hết cho n+1
<=> n+1 thuộc Ư(9)={1;3}
=> n={0;2}