Cho A(1; 1), B(2; 4), C(10; -2). Tìm tọa độ tâm của đường tròn nội tiếp \(\Delta\)ABC
Bài 1: Cmr
a, a.(a-1)-(a+3)(a+2):hết cho 6
b,a.(a+2)-(a-7).(a-5):cho 7
c,cho a.(b+1)+b.(a+1)=(a+1)(b+1) .Cm a.b=1
a ) \(a\left(a-1\right)-\left(a+3\right)\left(a+2\right)\)
\(=a^2-a-a^2-3a-2a-6\)
\(=-6a-6\)
\(=6\left(-a-1\right)⋮6\left(đpcm\right)\)
b ) \(a\left(a+2\right)-\left(a-7\right)\left(a-5\right)\)
\(=a^2+2a-\left(a^2-7a-5a+35\right)\)
\(=a^2+2a-a^2+7a+5a-35\)
\(=14a-35\)
\(=7\left(2a-5\right)⋮7\left(đpcm\right)\)
c ) \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow ab+a+ab+b=ab+b+a+1\)
\(\Leftrightarrow ab=1\left(đpcm\right)\)
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a)Cho A=(1/1+1/2+1/3+...+1/98).2.3.4...98
Chứng minh rằng A chia hết cho 99.
b)Cho B =1/1+1/2+1/3+...+1/96 và B bằng phân số a/b.Chứng minh rằng a chia hết cho 97.
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.
Cho biểu thức P = (a-1/a-3 + a-2/a-1 + a-1/-a^2+4a-3) : (a-1/a-3 + 3-a/a-1)
a, Rút gọn P
b, Cho a>2 so sánh P với 1/2
c, Cho a>2 .Tìm GTLN của P
cho a, b > 1 ; a + 1 chia hết cho b , b + 1 chia hết cho a . Tìm a,b( thuộc N)
#)Bạn tham khảo nhé :
Câu hỏi của Ngô Mạnh Kiên - Toán lớp 6 - Học toán với OnlineMath
P/s : vô thống kê hỏi đáp của mk có thể ấn vô link đc nhé
Có : \(\hept{\begin{cases}a+1⋮b\\b⋮b\end{cases}\Rightarrow a+1+b⋮b}\)
=> a + ( 1 + b) \(⋮\)b
Mà 1 + b \(⋮\)a và a \(⋮\)a => \(\hept{\begin{cases}b⋮a\\a⋮b\end{cases}}\Rightarrow a=b\)
=> a + 1 = b + 1
Có : a + 1 \(⋮\)b => b + 1\(⋮\)b
=> 1 \(⋮\)b => b = 1 ( không t/m)
=> a = 1 ( không t/m)
Vậy không có a,b t/m đề
3)Cho so thuc a sao cho a+1/a=3. Tính a^2 + 1/a^2 , a^3 + 1/a^3 , a^4 = 1/a^4
Ta có
\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)
Thay a=0,5 vào a^2+1/a^2 ta được
\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)
Làm tương tự với các câu còn lại
Cho a = (1/1+1/2+1/3+...+1/98).2.3.4...98
Chứng minh A chia hết cho 99Cho B =1/1+1/2+1/3+...+1/96 và B bằng phân số a/b . chứng minh rằng A chia hết cho 97
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:
a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)
Nếu a = 7k (k thuộc Z) thì a chia hết cho 7
Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7
Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Trong trường hợp nào củng có một thừa số chia hết cho 7
Vậy: a^7 - a chia hết cho 7
Mình không hiểu vài chỗ:
- Nếu a = 7k nghĩa là sao?
- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?
- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7" là sao?
- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?
- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?
Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.
Cho a là số nguyên lẻ ,a>1
Cm (a-1)1/2(a-1)-1/2chia hết cho a-2
Cho biểu thức K= ( √a/√a-1 - 1/a-√a) : ( 1/√a+1 + 2/a-1)
a) rút gọn K
b) tính giá trị của K khi a=3+2√2
c) tìm a sao cho K<0
a: \(K=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{a-1}\)
\(=\dfrac{a-1}{\sqrt{a}}\)
1.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab
2.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/2ab
3. cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab+4ab
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)