Cho tam giác ABC, AB=AC. Lấy M, N lần lượt thuộc AB, AC sao cho BM=CN. Chứng minh MN song song BC.
Cho tam giác ABC (A < 90 độ, AB > AC) Kẻ đường cao BM, CN của tam giác ABC (M thuộc AC, N thuộc AB).
a) Tam giác AMB có đồng dạng với tam giác ANC không? Vì sao?
b) Chứng minh MN . AC = BC . AN.
c)Trên AB lấy K sao cho BK = AC. E,F lần lượt là trung điểm của BC,AK. Chứng minh EF song song với tia phân giác Ax của BAC.
Cho tam giác ABC, đương phân giác AD. Điểm M thuộc AB, điểm N thuộc AC sao cho BM=BD, CN=CD. Chứng minh MN song song BC
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.
Cho tam giác ABC vuông tại A. AB = 36; AC = 48 một đường thẳng song song với BC và cắt 2 cạnh lần lượt ở M và N sao cho MN = BM + CN. Tính MN
Áp dụng định lí Py-ta-go ta tính được BC = 60
Đặt AM = x thì BM = 36 - x
Vì MN // BC \(\Rightarrow\frac{MN}{60}=\frac{x}{36}\Rightarrow MN=\frac{60x}{36}\)
Ta có : \(\frac{CN}{CA}=\frac{BM}{BA}\Rightarrow CN=\frac{AC.BM}{AB}=\frac{48\left(36-x\right)}{36}\)
\(\Rightarrow\frac{60x}{36}=\left(36-x\right)+\frac{48\left(36-x\right)}{36}\Leftrightarrow x=21\)
Suy ra MN = 35
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
các bạn giúp mình với
mai tớ kiểm tra rồi
Cho tam giác ABC vuông cân tại C trên cạnh AC BC lấy lần lượt lấy các điểm P Q sao cho Ac = CD từ điểm B vẽ BM song song với BC M thuộc AB Chứng minh pcqm là hình chữ nhật(vẽ luôn hình aa)
Để chứng minh PCQM là hình chữ nhật, ta cần chứng minh 4 đỉnh P,, Q, M đều thuộc một đường thẳng và đường thẳng đó vuông góc với cả hai đường PQ và CM.Ta sẽ chứng minh từng bước như sau:Bước 1: Chứng minh P, C, Q thẳng hàngVì tam giác ABC vuông cân tại C và BM song song với BC, nên theo thuộc tính tam giác vuông cân và tam giác đồng dạng:- Ta có AC = BC (tam giác vuông cân)- Ta có BM || BC (theo giả thiết)- Ta có ∠ABC = ∠BAC (tam giác vuông cân)Do đó, tam giác ABC đồng dạng với tam giác BPC (theo góc). Từ đó, ta có:∠BPC = ∠ACB = 90° - ∠ABC = 90° - ∠BAC = ∠BCA (do tam giác vuông cân)Vậy ta có P, C,
cho tam giác abc vuông tại a . gọi m ,n lần lượt là trung điểm của ab ,bc .trên tia đối của mn lấy điểm d sao cho mn =nd.
a.chứng minh ;bm=cd
b. chứng minh ;góc abc=góc bcd,từ đosuy ra cd vuông góc ac
c. chứng minh; ac=2mn và md song song ac
Cho tam giác ABC, I là giao điểm 2 tia phân giác của góc B và C. Qua điểm I vẽ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Chứng minh rằng MN= BM+CN
Ta có: BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{B_1}=\widehat{B_2}\)
CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{C_1}=\widehat{C_2}\)
\(MN//BC\Rightarrow\widehat{I_1}=\widehat{B_2}\),\(\widehat{I_2}=\widehat{C_2}\)
+) Vì \(\widehat{B_1}=\widehat{B_2}\);\(\widehat{I_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{I_1}\Rightarrow\Delta MBI\)cân tại M
\(\Rightarrow MB=MI\)
+) Vì \(\widehat{C_1}=\widehat{C_2}\);\(\widehat{I_1}=\widehat{C_2}\)
\(\Rightarrow\widehat{C_1}=\widehat{I_2}\Rightarrow\Delta NCI\)Cân tại N
\(\Rightarrow NC=NI\)
Ta có: \(MN=MI+NI\)
mà \(MB=MI\);\(NC=NI\)
\(\Rightarrow MN=MB+NC\left(đpcm\right)\)
Cho tam giác ABC có AB=6cm, AC=4cm. Trên AB lấy M sao cho AM=1,5. Trên AC lấy N sao cho CN=3cm.
a) CM: MN//BC.
b) Từ N kẻ đường thẳng song song với AB cắt BC tại P. Chứng minh tam giác AMN đồng dạng với tam giác NPC.
c) Tính tỉ số diện tích của tam giác ANP và tam giác ABP
Chỉ cần giúp mình câu c thôi ạ.
Mình cảm ơn
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)