Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Huyền
Xem chi tiết
Nguyễn Thị Huyền Trang
Xem chi tiết
Lina Nguyễn
26 tháng 10 2016 lúc 22:33

( 3x-5 /9 )^2002 > 0 ; ( 3y+0,4/3 )^2004 > 0

=> (3x-5/9 )^2002 = 0 và ( 3y + 0,4 / 3 )^2004 = 0

=> 3x - 5 = 0

3x = 5

x = 5/3

=> 3y + 0,4 = 0

3y = -0,4

y= -2/15

👾thuii
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 20:07

\(\left(\dfrac{3x-5}{9}\right)^{2018}>=0\forall x\)

\(\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall y\)

Do đó: \(\left(\dfrac{3x-5}{9}\right)^{2018}+\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{0.4}{3}=-\dfrac{2}{15}\end{matrix}\right.\)

Minh Ngọc Đoàn
Xem chi tiết
Thao Nhi
17 tháng 8 2015 lúc 19:42

bai 2: a) \(2^{30}=\left(2^3\right)^{10}=8^{10}\)

            \(3^{20}=\left(3^2\right)^{10}=9^{10}\)

vi 810 <910 nen 230 <320

       b)       \(5^{202}=\left(5^2\right)^{101}=25^{101}\)

                 \(2^{505}=\left(2^5\right)^{101}=32^{101}\)

vi 25101 <32101 nen 5202 <2505

c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

   \(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

vi 81111>64111 va 111444>111333

nen 333444>444333

bai 3 : \(\left(\frac{1}{3}\right)^{2n-1}=3^5\)

 \(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^{-5}\)

2n-1=-5

2n=-5+1

2n=-4

n=-4:2

n=-2

Bai 4 : 3x-5/9=0 va 3y+0,4/3=0

           3x=5/9 va 3y=2/15

             x=5/27 va y=2/45

Bai 5:

A=75. {42002.(42+1)+....+(42+1)+1)+25

A=75.{42002.20+...+20+1}+25

A=75.{20.(42002+...+1)+1}+25

A=75.20.(42002+..+1)+75+25

A=1500.(42002+...+1)+100

A=100.{15.(42002+...+1)+1} chia het cho 100

 

 

hạ vi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 11 2020 lúc 19:18

\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)

Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)

Khách vãng lai đã xóa
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 15:01

Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+\dfrac{2}{5}\right)^{100}\ge0\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+\dfrac{2}{5}\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(\dfrac{1}{5};\dfrac{-2}{5};3\right)\)

lê đình hải
Xem chi tiết
ILoveMath
17 tháng 1 2022 lúc 19:57

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0,\left(y+0,4\right)^{100}\ge0,\left(z-3\right)^{678}\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy \(\left(x,y,z\right)=\left(\dfrac{1}{5};-0,4;3\right)\)

Nguyễn Huy Tú
17 tháng 1 2022 lúc 19:58

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+0,4\right)^{100}\ge\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

mà \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Dấu ''='' xảy ra khi \(x=\dfrac{1}{5};y=-0,4;z=3\)

Nguyễn Khánh Linh
Xem chi tiết
an Le
Xem chi tiết