Cho x,y,z >0 ,x+y+z=3
Tìm MIN của 4x2 +6y2 +3z2 ???
Giúp mình nha!!!
cho 3 số x;y;z > 0 thỏa mãn x+y+z=2 .Tìm Min x^4 + y^4 + z^4 .Giúp mình với mình tích cho.
Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2
Ta có A=(x^2)^2+(y^2)^2+(z^2)^2
Áp dụng bđt Cauchy-Schwarz ta có
3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3
Áp dụng bđt Cauchy-Schwarz lần 2
3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/ (x+y+z)^2/3 >/ 2^2/3 >/ 4/3
=> A >/ (4/3)^2/3=16/27
Đẳng thức xảy ra <=> x=y=z=2/3
tìm min của A=xy+yz+xz biết x2+y2+z2=2(x,y,z>0) giúp mình với nha, cần gấp
ko phải là tìm max mà tìm min
Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Đẳng thức xảy ra khi \(x=y=z\)
cho x y z lớn hơn hoặc bằng 0 và x+ y +z =3
tìm min A = √5x+1 + √5y+1 + √5z+1
giúp mình với mình đang bí dấu căn
Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le4\)
Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)
Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)
\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)
Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)
Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)
\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
tìm MIN của 1/x+2y + 1/y+2z + 1/z+2x với x+y+z=6
giúp mình nha
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
Giúp mình với, mình cần gấp!
Cho x, y, z > 0 và x^2+y^2+z^2 = 12. Tìm min của x^5 + y^5 + z^5?
Cho a,b,c > 0 và a+b+c =12. Tìm max abc?
Cảm ơn mọi người nhiều!
Cho các số x,y,z >=0 và thỏa x+y+z=1
Tìm MIN của \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
CÁC BẠN AI BIẾT LÀM GIÚP MÌNH VỚI
cho : x,y,z ≥0 và x+y+z≤3
tìm min của biểu thức: A=11+x+11+y+11+z
-Sửa đề: x,y,z>0. Tìm min của \(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
-Áp dụng BDDT Caushy-Schwarz ta có:
\(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\ge\dfrac{9}{3}=3\)
\(A_{min}=3\Leftrightarrow x=y=z=1\)
Cho x,y,z>0 thoả mãn x+y+z=<1. Tìm min của 2(x+y+z)+3(1/x+1/y+1/z)
Mọi người giúp mình bài này nha: Cho x3+y3+z3=3xyz
Chứng minh rằng x+y+z=0 hoặc x=y=z
Cô mình có giải tới đoạn này rồi, nhưng mình không biết làm tiếp, giúp mình hoàn thành nốt nha
x3+y3+z3=3xyz
=>(x+y)3 = 3xy(x+y) + z3- 3xyz =0
=> (x+y)3 + z3 - 3xy(x+y+z) = 0
giúp mình mình tick đúng cho nha <3
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
x^3+y^3+z^3-3xy(x+y+z)=0
x^3+y^3+z^3-3xy*xyz=0
3xyz-3xyz=0
chuc ban thanh cong