Tìm x:
\(8\sqrt{x}-11x-13=0\)
Giải pt
\(-11x+8\sqrt{x}-13=0\)
`-11x+8\sqrt{x}-13=0` `ĐK: x >= 0`
Đặt `\sqrt{x}=t` `(t >= 0)`. Khi đó ptr có dạng:
`-11t^2+8t-13=0` `(1)`
Ptr `(1)` có: `\Delta'=4^2 -(-11).(-13)=-127 < 0`
`=>` Ptr `(1)` vô nghiệm.
Vậy ptr đã cho vô nghiệm.
Giải pt
\(-11x+8\sqrt{x}-13=0\)
`<=> 11x-8sqrtx+13=0`
Đặt `sqrtx=a(a>=0)`.
Phương trình trở thành: `11a^2-8a+13=0`.
Ta có: `Delta = b^2-4ac=8^2-4.11.13=-508<0`.
Vậy nên phương trình vô nghiệm.
giải phương trình :
a. \(\sqrt{\left(x-3\right)\left(8-x\right)}+x^2-11x=0\)
b. \(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)
c. \(\sqrt{1+x}+\sqrt{8-x}=\sqrt{-x^2+7x+8}+3\)
Câu a)
\(\sqrt{(x-3)(8-x)}+x^2-11x=0\)
\(\Leftrightarrow \sqrt{11x-x^2-24}+x^2-11x=0(*)\)
Đặt \(\sqrt{11x-x^2-24}=a(a\geq 0)\Rightarrow x^2-11x=-(a^2+24)\)
Khi đó \((*)\Leftrightarrow a-(a^2+24)=0\)
\(\Leftrightarrow a^2-a+24=0\Leftrightarrow (a-\frac{1}{2})^2+\frac{95}{4}=0\) (vô lý)
Vậy pt vô nghiệm.
Câu b)
ĐKXĐ:.........
\(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)
\(\Rightarrow (\sqrt{7x-13}-\sqrt{3x-9})^2=5x-27\)
\(\Leftrightarrow 10x-22-2\sqrt{(7x-13)(3x-9)}=5x-27\)
\(\Leftrightarrow 5(x+1)=2\sqrt{(7x-13)(3x-9)}\)
\(\Rightarrow 25(x+1)^2=4(7x-13)(3x-9)\)
\(\Leftrightarrow 25(x^2+2x+1)=84x^2-408x+468\)
\(\Leftrightarrow 59x^2-458x+443=0\)
\(\Rightarrow x=\frac{229\pm 8\sqrt{411}}{59}\) . Kết hợp với ĐKXĐ suy ra \(x=\frac{229+8\sqrt{411}}{59}\)
Câu c:
ĐKXĐ:.............
Đặt \(\sqrt{x+1}=a; \sqrt{8-x}=b\Rightarrow ab=\sqrt{(x+1)(8-x)}=\sqrt{-x^2+7x+8}\)
Khi đó ta thu được hệ sau:
\(\left\{\begin{matrix} a+b=ab+3\\ a^2+b^2=9\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=ab+3\\ (a+b)^2-2ab=9\end{matrix}\right.\)
\(\Rightarrow (ab+3)^2-2ab=9\)
\(\Leftrightarrow a^2b^2+4ab=0\Leftrightarrow ab(ab+4)=0\)
Vì \(a\geq 0; b\geq 0\Rightarrow ab+4>0\)
Do đó: \(ab=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=8\end{matrix}\right.\)
Thử lại đều thỏa mãn
Vậy...........
a) -12+(x-9)<0 tìm x thuộc Z
b)x-(13-x)=-24+(-7+x)
c) (x - 7)+( 5-x)=12-(-8+x)
d)5(x-6)-2(x+3)=12
e)3(x-4)-(8-x)=12
f) 7(x-3)-5(3-x)=11x-5
g) 7(x-9)-5(6-x)=-6+11x
a) -12+(x-9)<0 tìm x thuộc Z
b)x-(13-x)=-24+(-7+x)
c) (x - 7)+( 5-x)=12-(-8+x)
d)5(x-6)-2(x+3)=12
e)3(x-4)-(8-x)=12
f) 7(x-3)-5(3-x)=11x-5
g) 7(x-9)-5(6-x)=-6+11x
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
f.
$x^2-(\sqrt{2}+\sqrt{8})x+4=0$
$\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}x+4=0$
$\Leftrightarrow x(x-\sqrt{2})-2\sqrt{2}(x-\sqrt{2})=0$
$\Leftrightarrow (x-\sqrt{2})(x-2\sqrt{2})=0$
$\Leftrightarrow x-\sqrt{2}=0$ hoặc $x-2\sqrt{2}=0$
$\Leftrightarrow x=\sqrt{2}$ hoặc $x=2\sqrt{2}$
g.
$(1+\sqrt{3})x^2-(2\sqrt{3}+1)x+\sqrt{3}=0$
$\Leftrightarrow (1+\sqrt{3})x^2-(1+\sqrt{3})x-(\sqrt{3}x-\sqrt{3})=0$
$\Leftrightarrow (1+\sqrt{3})x(x-1)-\sqrt{3}(x-1)=0$
$\Leftrightarrow (x-1)[(1+\sqrt{3})x-\sqrt{3}]=0$
$\Leftrightarrow x-1=0$ hoặc $(1+\sqrt{3})x-\sqrt{3}=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{3-\sqrt{3}}{2}$
(2+x) (2.75-11x) = 0
A=(8*3^3)^5*49*7^13
(2+x) (2.75-11x) = 0
TH1 (2+x)=0
=>x=0-2
=>x=-2
TH2 (2.75-11x)=0
=>11x=150-0=150
=>x=150/11
a) \(\sqrt{2x+3}+\sqrt{x+2}\le1\)
b) \(\sqrt{x+3}-\sqrt{7-x}-\sqrt{2x-8}>0\)
c) \(\sqrt{\left(x-3\right)\left(8-x\right)}+x^2-11x+26>0\)
d) \(\frac{\sqrt{x^2-4x}}{3-x}\le2\)
a/ ĐKXĐ \(x\ge-\frac{3}{2}\)
Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được
\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))
Tiếp tục bình phương rồi rút gọn ta được
\(x^2-4x-8\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)
Kết hợp tất cả ta được
\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)
Câu b với d cũng chỉ cần bình phương là ra
c/ Điều kiện: \(3\le x\le8\)
Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)
Thì bài toán thành
\(a-a^2+2>0\)
\(\Leftrightarrow-1\le a\le2\)
Tới đây thì đơn giản rồi
Tìm x:
a, 11x (15 - x )=5
b, x - 43 = (57 - x) - 50
c, ( x-2 ) (8-x) = 0
b) Ta có: \(x-43=\left(57-x\right)-50\)
\(\Leftrightarrow x-43=57-x-50\)
\(\Leftrightarrow x+x=7+43\)
\(\Leftrightarrow2x=50\)
hay x=25
Vậy: x=25
c) Ta có: (x-2)(8-x)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=8\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)