cho hình vuông abcd có cạnh a. Tính vecto BA+ vecto BD
cho hình vuông abcd cạnh a d là đường thẳng đi qua a // bd . gọi m là điểm thuộc đường thẳng d sao cho |vecto ma + vecto mb + vecto mc - vecto md| nhỏ nhất .tính theo a độ dài vecto md
Cho hình chữ nhật ABCD có cạnh AD=2AB=10cm. Tính độ dài vecto AB+ vecto BD
\(\left|\overrightarrow{AB}+\overrightarrow{BD}\right|=\left|\overrightarrow{AD}\right|\)
\(=AD=10\left(cm\right)\)
Cho hình chữ nhật ABCD có cạnh AD=2AB=10cm . Tính độ dài vecto AD+ vecto BD
AD=2AB=10cm
=>\(AB=\dfrac{10}{2}=5\left(cm\right)\)
ABCD là hình chữ nhật
=>\(DB^2=DA^2+AB^2\)
=>\(DB^2=10^2+5^2=125\)
=>\(DB=\sqrt{125}=5\sqrt{5}\left(cm\right)\)
Gọi K là trung điểm của AB
Xét ΔDAB có DK là đường trung tuyến
nên \(\overrightarrow{DA}+\overrightarrow{DB}=2\cdot\overrightarrow{DK}\)
K là trung điểm của AB
=>\(KA=\dfrac{5}{2}=2,5\left(cm\right)\)
ΔKAD vuông tại A
=>\(DK^2=DA^2+AK^2\)
=>\(DK^2=10^2+2,5^2=106,25\)
=>\(DK=\dfrac{5\sqrt{17}}{2}\left(cm\right)\)
\(\left|\overrightarrow{AD}+\overrightarrow{BD}\right|=\left|-\overrightarrow{DA}-\overrightarrow{DB}\right|\)
\(=\left|\overrightarrow{DA}+\overrightarrow{DB}\right|=\left|2\cdot\overrightarrow{DK}\right|\)
\(=2\cdot DK\)
\(=2\cdot\dfrac{5\sqrt{17}}{2}=5\sqrt{17}\)
Cho tam giác đều ABC có cạnh là 4a. Tính vec tơ AB.AC
Cho hình vuông ABCD có cạnh là a. Tính vecto AB.AD
Cho tma giác ABC có A=90độ B=60độ và AB=4. Tính vecto AC.CB
Cho hình vuông ABCD, cạnh 8cm. Tính độ dài các vecto sau:
a) vecto OA + vecto OB
b) vecto OA - vecto OB
c) 3 vecto OA - 2 vecto OB
d) 3/4 vecto OA + 5/2 vecto OB
a: Kẻ OH\(\perp\)AB
OH\(\perp\)AB
AD\(\perp\)AB
Do đó OH//AD
Xét ΔBAD có
O là trung điểm của BD
OH//AD
Do đó: H là trung điểm của AB
=>\(OH=\dfrac{AD}{2}=\dfrac{8}{2}=4\)
XétΔOAB có OH là trung tuyến
nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OH}\)
=>\(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=2\cdot OH=2\cdot4=8\)
b: \(\left|\overrightarrow{OA}-\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OA}\right|=\left|\overrightarrow{BA}\right|\)
\(=BA=8\left(cm\right)\)
cho hình thoi ABCD có góc A=60 độ,cạnh a.Gọi O là giao điểm của AC và BD.Tính độ dài vecto AB + vecto AD...vecto BA - vecto BC....vecto OB- vecto DC
cho hình thang ABCD (AB//CD) và có hai đường chéo vuông góc với nhau . Biết AB + CD = 30 cm . tính | vecto AC + vecto BD|
Cho hình vuông ABCD cạnh a, M là 1 điểm bất kỳ CMR các vecto ko phụ thuộc vào M và tính độ dài a, vecto MA +vecto MB-2vectoMF
Đề bài sai em
Điểm F là điểm nào nhỉ?
Cho ABCD là hình thang vuông tại A,B (AD là đáy lớn). AD = 2BC và AB = BC = a
a. Tính vecto CD - vecto CB
b. Gọi I trung điểm AD. CM: vecto BI + vecto BC - vecto BA = vecto AD