tìm tất cả số nguyên dương n sao cho:B=2^b+3^n+4^n là số chính phương
Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\) là số chính phương
Đặt \(n^4+n^3+1=a^2\)
\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)
\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)
\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow16n^2\le64\)
\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.
Vậy ....
666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010
Tìm tất cả n là các số nguyên dương sao cho 60+2n-n^2 là số chính phương
ta có :
Tìm tất cả số nguyên n sao cho A = n^4 + n^3 + n^2 là số chính phương
Có \(A=n^2\left(n^2+n+1\right)\)
Để A là scp \(\Leftrightarrow n^2+n+1\) là scp
Đặt \(a^2=n^2+n+1\) (\(a\in Z\))
\(\Leftrightarrow4a^2=4n^2+4n+4\)
\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)
TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)
TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)
TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)
Vậy n=0 và n=-1 thì A là scp
Tìm tất cả số nguyên dương n sao cho : \(T=2^n+3^n+4^n\)là số chính phương
( Có vẻ như câu này khó đấy ! )
https://freefire.ff.garena.vn?code=a9c37560-de15-11ea-a3f0-552a419ccfac
Copy link lên gg rồi đăng nhập fb là sẽ đc k
Không trả lời thì đừng viết. Làm mấy điều thiểu năng đấy không sợ bị chửi à
+) Xét n = 1: T = 2 + 3 + 4 = 9 thỏa mãn
+) Xét \(n\ge2\)
\(2^n+3^n+4^n\equiv\left(-1\right)^n\)(mod 4) mà do T là số chính phương nên n phải chẵn
+) Xét n chẵn:
\(2^n+3^n+4^n\equiv\left(-1\right)^n+1^n\equiv2\)(mod 3), do T là số chính phương nên vô lí
Vậy n = 1
a) Tìm tất cả n c Z sao cho n2 + 2002 là một số chính phương.
b) Tìm các số nguyên dương n sao cho x = 2n + 2003 và y = 3n + 2005 là các số chính phương
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm tất cả các số nguyên dương n sao cho số n(n+1)(n+7)(n+8) là 1 số chính phương
Tìm tất cả các số nguyên dương n sao cho B = 2n + 3n + 4n là một số chính phương.
Có cách giải nào khác ngoài đồng dư o ạ. Làm hộ em với.
Bài này có mỗi cách đồng dư là nhanh nhất r bạn
tìm tất cả các cặp số (p,n) trong đó p là số nguyên tố ,n là số nguyên dương sao cho pn + 144 là số chính phương
Đặt \(p^n+144=a^2\left(a\in N\right)\)
\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)
Ta thấy : \(a-12+a+12=2a⋮2\)
\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)
\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)
Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$, \(y>x\)
\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)
Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.