Tìm ĐK của x để \(B=\sqrt{-2x+1}-3x+15\) có nghĩa
Tìm đk để các biểu thức sau có nghĩa:
1. \(\sqrt{3x^{2}-x+2}\)
2. \((\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{2-\sqrt{x}}): \dfrac{x}{\sqrt{2x+1}}\)
1: ĐKXĐ: 3x^2-x+2>=0
=>x thuộc R
2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0
=>x>0 và x<>1 và x<>4
Tìm đk của x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x^2-3}{5-3x}}\)
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)
b: ĐKXĐ: \(x< \dfrac{15}{2}\)
c: ĐKXĐ: \(x\le0\)
Tìm đk để các biểu thức sau có nghĩa:
a) \(\sqrt{\dfrac{-1}{10-5x}}\)
b) \(\dfrac{7}{\sqrt{7-3x}}\)
c) \(\sqrt{-5-2x}\)
a) ĐKXĐ: \(10-5x< 0\Leftrightarrow5x>10\Leftrightarrow x>2\)
b) ĐKXĐ: \(7-3x>0\Leftrightarrow3x< 7\Leftrightarrow x< \dfrac{7}{3}\)
c) ĐKXĐ: \(-5-2x\ge0\Leftrightarrow2x\le-5\Leftrightarrow x\le-\dfrac{5}{2}\)
a) \(x>2\)
b) \(x< \dfrac{7}{3}\)
c) \(x\le-\dfrac{5}{2}\)
a: ĐKXĐ: x>2
b: ĐKXĐ: \(x< \dfrac{7}{3}\)
1) Tìm ĐK của x để các căn thức sau có nghĩa:
a) \(\sqrt{x-2}\) b) \(\sqrt{2-3x}\)
2) Tính:
a) (\(\sqrt{8}-3\sqrt{2}\) ). \(\sqrt{2}\) b)\(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\)
c) \(\sqrt{4.36}\) d) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}}\)
3) Rút gọn:
a) \(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}\) b) \(\sqrt[3]{27}+\sqrt[3]{-64}+2.\sqrt[3]{125}\)
4) Tìm x, biết:
\(\sqrt{4x+20}-2\sqrt{x+5}+\sqrt{9x+45}=6\)
5) Cho :
B = (\(\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}+2}\)) : \(\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\) ( với x > 0; x khác 1)
a) Rút gọn B
b) Tìm x để B = \(\dfrac{5}{2}\)
\(1,\\ a,ĐK:x-2\ge0\Leftrightarrow x\ge2\\ b,ĐK:2-3x\ge0\Leftrightarrow x\le\dfrac{2}{3}\\ 2,\\ a,=\sqrt{16}-3\sqrt{4}=4-6=-2\\ b,=\dfrac{-\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{7}\\ c,=\sqrt{4}\cdot\sqrt{36}=2\cdot6=12\\ d,=\sqrt{\dfrac{25}{81}}\cdot\sqrt{\dfrac{16}{49}}=\dfrac{5}{9}\cdot\dfrac{4}{7}=\dfrac{20}{63}\\ 3,\\ a,=\sqrt{19+2\sqrt{34}}-\sqrt{19-2\sqrt{34}}\\ =\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}=\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}=2\sqrt{2}\\ b,=3-4+2\cdot5=9\)
\(4,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\\ 5,\\ a,B=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ b,B=\dfrac{5}{2}\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{5}{2}\\ \Leftrightarrow2\sqrt{x}+4=5\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\)
Câu 1 :Cho 2 biểu thức
A=\(\sqrt{2x^2-3x+1}\) vá B=\(\sqrt{x-1}.\sqrt{2x-1}\)
a.Tìm x để A có nghĩa
b.Tìm x để B có nghĩa
c.Với giá trị nào của x thì A=B
d.Với giá trị nào của x thì chỉ A có nghĩa, còn B không có nghĩa
Câu 2: Biết \(x^2+y^2=117\)Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức A = 2x+3y
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
Tìm đk của biến để các bt sau xác định
\(\frac{5x-3}{2x}+\sqrt{3x+y}\)
\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}\)
\(\frac{5x-3}{2x}+\sqrt{3x+y}xđ\Leftrightarrow\hept{\begin{cases}2x\ne0\\3x+y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ge-\frac{y}{3}\end{cases}}}\)
\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}xđ\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x+3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x>-3\end{cases}\Rightarrow x\ge\frac{1}{3}}\)
tìm đk để căn thức có nghĩa
a/ \(\sqrt{\dfrac{4}{x+3}}\) b/\(\sqrt{\left(x-1\right)\left(x-3\right)}\) c/\(\sqrt{\dfrac{x-2}{x+3}}\)
Ủa câu này bạn cho bên trong căn lớn hơn 0 thôi, có phân số thì thêm đk mẫu khác 0 thôi ^^
a: ĐKXĐ: x>-3
b: ĐKXĐ: \(\left[{}\begin{matrix}x>=3\\x< =1\end{matrix}\right.\)
A=\(\sqrt{2x^2-3x+1}\) vá B=\(\sqrt{x-1.}\sqrt{2x-1}\)
a.Tìm x để A có nghĩa
b.Tìm x để B có nghĩa
c.Với giá trị nào của x thì A = B
d.Với giá trị nào của x thì chỉ A có nghĩa, còn B không có nghĩa
Câu 2: Biết x2 + y2 = 117 Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức A = 2x+3
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)