Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:03

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 11:05

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

Lương Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 8:12

a:

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+x-9-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

b: Khi x=7-4căn 3 thì 

\(A=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

c: A=3

=>căn x-2=1

=>x=9(loại)

YangSu
29 tháng 6 2023 lúc 8:16

\(a,A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(dkxd:x\ne4,x\ge0,x\ne9\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{x-9}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{9-x+x-9-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-2}{4\sqrt{x}-4-x}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(x-4\sqrt{x}+4\right)}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

\(b,x=7-4\sqrt{3}\Rightarrow A=\dfrac{3}{\sqrt{7-4\sqrt{3}}-2}=\dfrac{3}{\sqrt{\left(\sqrt{3}-2\right)^2}-2}=\dfrac{3}{\left|\sqrt{3}-2\right|-2}=\dfrac{3}{-\sqrt{3}+2-2}=\dfrac{\sqrt{3^2}}{-\sqrt{3}}=-\sqrt{3}\)

\(c,A=3\Rightarrow\dfrac{3}{\sqrt{x}-2}=3\\ \Rightarrow\dfrac{3-3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=0\\ \Rightarrow3-3\sqrt{x}+6=0\\ \Rightarrow-3\sqrt{x}=-9\\ \Rightarrow\sqrt{x}=3\\ \Rightarrow x=9\left(ktm\right)\)

Vậy không có giá trị x thỏa mãn đề bài.

Nguyên Hoàng
Xem chi tiết

 

ĐKXĐ: x>=0; \(x\notin\left\{9;4\right\}\)\(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Để P là số nguyên thì \(3⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5\right\}\)

=>\(x\in\left\{9;1;25\right\}\)

Kết hợp ĐKXĐ, ta được; \(x\in\left\{1;25\right\}\)

Akai Haruma
29 tháng 1 lúc 22:19

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9; x\neq 4$

\(P=\frac{-3\sqrt{x}+9}{x-9}: \left[\frac{9-x}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}-2)(\sqrt{x}+3)}-\frac{(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\right]\)

\(=\frac{-3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{9-x+x-9-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}\\ =\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)

Với $x\in\mathbb{Z}$, để $P$ nguyên thì $\sqrt{x}-2$ là ước nguyên của 3

$\Rightarrow \sqrt{x}-2\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow \sqrt{x}\in \left\{3; 1; 5; -1\right\}$

$\Rightarrow x\in \left\{9; 1; 25\right\}$

Theo ĐKXĐ suy ra $x=1$ hoặc $x=25$

Anh Quynh
Xem chi tiết
An Thy
30 tháng 7 2021 lúc 16:37

a) \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=-\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

b) \(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thế vào B \(\Rightarrow B=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:45

a) Ta có: \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:47

b) Thay \(x=7-4\sqrt{3}\) vào B, ta được:

\(B=\dfrac{3}{2-\sqrt{3}-2}=-\sqrt{3}\)

Trang Nguyễn
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 9:46

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

Akai Haruma
31 tháng 7 2021 lúc 9:51

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

An Thy
31 tháng 7 2021 lúc 9:53

a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)

b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)

\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)

\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)

\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)

c) \(\sqrt{x^2-6x+9}=2x+1\)

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)

\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)

\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)

\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)

\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)

 

Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 8 2021 lúc 18:07

\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(x\ge0;x\ne3;x\ne-3;x\ne9;x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\\ =\dfrac{3}{\sqrt{x}-2}\)

Tick hộ nha 😘

Etermintrude💫
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 19:13

a) Ta có: \(M=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3}{\sqrt{x}-2}\)

Ng Th Kh
Xem chi tiết
Đàm Đức Mạnh
7 tháng 5 2017 lúc 22:40

kho qua

Ng Th Kh
7 tháng 5 2017 lúc 22:41

Các bạn giải giúp mk với ạ

Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

nguyenhoangtung
Xem chi tiết
Toru
30 tháng 8 2023 lúc 12:04

Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))

\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)

Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)

\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)

\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)

\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)

Ta thấy: \(9\sqrt{x}+18>0\forall x\)

\(\Rightarrow8\sqrt{x}-18< 0\)

\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)

\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)

Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)

\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)

#Urushi