Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Minh Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 22:17

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

Phạm Duy Hùng
Xem chi tiết
Xuân Trà
Xem chi tiết
Chiến thần xem chùa
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 23:01

a: Xét tứ giác KAOB có

góc KAO+góc KBO=180 độ

nên KAOB là tứ giác nội tiếp

b: Xét (O) có

KA,KB là các tiếp tuyến

nên KA=KB

mà OA=OB

nên OK là trung trực của BA

=>OK vuông góc với AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔBCA vuông tại B

=>BC vuông góc với BA(2)

Từ (1), (2) suy ra BC//KO

Dương Ngọc Minh
Xem chi tiết
Vũ Tuấn Đạt
5 tháng 1 lúc 5:18

Tam giác CDK đồng dạng Tam giác ABO ( g.g) => CK/BA = DK/OB => CK.OB=BA.DK (1) . Tam giác DBA có IK//BA => IK/BA = DK/BD => IK.BD=BA.DK (2) . Từ (1) (2) =>CK.OB=IK.BD => CK.OB=IK.2OB=> CK=2IK . Lập luận 1 tí rồi suy ra điều phải chứng minh

Trần Thị Phương Kim
Xem chi tiết

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)

Nguyễn Thanh Thêm
2 tháng 1 lúc 17:52

Dfg

Long Duy
Xem chi tiết
Quỳnh Ngô Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 20:49

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

nên MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại K

Xét ΔOAM vuông tại A có AK là đường cao

nên \(OK\cdot OM=OA^2=R^2\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)

\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{KAI}\)

=>AI là phân giác của góc MAB

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>MK là phân giác của góc AMB

Xét ΔMAB có

MK,AI là các đường phân giác

MK cắt AI tại I

Do đó: I là tâm đường tròn nội tiếp ΔMAB

bảo ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 8:22

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...