tìm a b c sao cho ax3+bx2+c chia hết cho x2-1 dư 5
tìm a,b sao cho f(x)= ax3 +bx2 +10x - 4 chia hết cho đa thức g(x) = x2 +x - 2
Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5
cho A(x)=ax3 bx2 cx d chia hết cho 3. (a;b;c;d thuộc z). Biết A(x) chia hết cho 3 với mọi x thuộc z. CMR a;b;c;d chia hết cho 3. cần gấp, ai giúp mình vs
tìm a, b, c, d biết :
x4 + ax3 + bx2 -8x + 4= ( x2 + cx + d)
Hệ số của \(x^2+cx+d^2\) là \(d^2\)
\(\Rightarrow d^2=4\Rightarrow d=\pm2\)
Thay \(d=2\) vào biểu thức :
\(x^4+ax^3+bx^2-8x+4=x^2+cd+2\)
\(VP=x^2+cx+2=x^4+c^2x^2+4+2cx^3+4cx+4x^2=x^4+2cx^3++x^2+c^2+4++4cx+4\)
Ta có : \(x^4+2cx^3+x^2+c^2+4+4cx+4=x^4+ax^3+bx^2-8x+4\)
\(\left\{{}\begin{matrix}2c=a\\c^2+4=b\\4c=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-2\\a=-4\\b=8\end{matrix}\right.\)
Tiếp tục thay \(d=-2\) tương tự \(d=2\)
Tim da thuc bac baf(x)=ax3+bx2+c.Biet rangf(x) chia het cho x+2.Con khi chia cho x2-1 thi du la x+5
1 a. tìm số tự nhiên n để phân số 7n-8/2n-3 có giá trị lớn nhất
b. Cho đa thức p(x)=ax3+bx2+cx+d với a,b,c,d là các hệ số nguyên . Biết rằng p(x) chia hết cho 5 với mọi x nguyên. Chứng minh rằng a,b,c,d đều chia hết cho 5
c. cho a b c là độ dài 3 cạnh tam giác chứng minh a/b+c + b/a+c +c/a+b < 2
mình cần gấp nha, cảm ơn
a) Cho P(x) = ax2 + bx + c (a, b, c nguyên). Biết rằng P(x) chia hết cho 3 với mọi giá trị nguyên của x. CMR: a, b, c đều chia hết cho 3.
a) Cho Q(x) = ax3 + bx2 + cx + d (a, b, c, d nguyên). Biết rằng Q(x) chia hết cho 5 với mọi giá trị nguyên của x. CMR: a, b, c, d đều chia hết cho 5.
(Giup mình với, mai mình phải nộp)
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5
)
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5