\(\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
Tính giá trị các biểu thức sau:
a) \(A=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
b) \(A=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c) \(A=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
c) \(A=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)
\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)
b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)
\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)
c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)
\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)
d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)
\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)
11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)
13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)
17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)
18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)
19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)
20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)
21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)
22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)
23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)
24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)
26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)
28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)
29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)
A)\(\frac{6+2\sqrt{5}}{3-\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{\sqrt{5}}{2-\sqrt{5}}\)
B)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}-\frac{3}{\sqrt{2}-1}\)
C)\(\frac{3+\sqrt{2}}{3-\sqrt{3}}-\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{2}{\sqrt{3}-1}\)
D
thực hiện phép tính: a)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
d)\(\left(2\sqrt{5}+\sqrt{12}\right)\left(\sqrt{3}-\sqrt{5}\right)\)
e)\(\sqrt{2}+\sqrt{\frac{1}{2}}+\sqrt{72}-\sqrt{\frac{3}{2}}\)
f)\(\sqrt{2}\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
g)\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\left(2\sqrt{3}-2007\right)\)
a/ Bạn ghi nhầm đề rồi
c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)
f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)
g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)
\(=2007\)
tính:
a)\(\frac{1}{1+\sqrt{5}}+\frac{1}{1-\sqrt{5}}\)
b)\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c)\(\frac{2}{\sqrt{5}+1}+\sqrt{\frac{2}{3-\sqrt{5}}}-5\sqrt{\frac{1}{5}}\)
d)\(\left(\frac{5}{\sqrt{15}-\sqrt{10}}-\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{3}-\sqrt{5}}\right)^2\)
e)\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a/ \(\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
b/ \(\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)
c/ \(\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\frac{\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=2-\sqrt{3}+2+\sqrt{3}=4\)
d/ \(\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{8}=\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=1\)
e/ \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{\sqrt{2}\left(3-\sqrt{3}+3+\sqrt{3}\right)}{6}=\sqrt{2}\)
f/ \(\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
\(A=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(B=\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(C=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(D=\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(E=\frac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Phần d mình sửa lại đề nha : \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{4}-4}\)
bn xem lại đề câu d đi sao mẫu lại bằng 0 rồi
Tính
A/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
B/ \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
C/ \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
D/ \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)