Câu 1: Tính
a)\(\sqrt{0,125}\)
b)\(\sqrt{\frac{10.4,9}{16}}\)
c)\(\sqrt{\frac{\sqrt{128}}{\sqrt{18}}}\)
Câu 2: Trục căn ở mẫu
\(\frac{3}{2\sqrt{3}}\)
Câu 3: Rút gọn
a) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
b) \(2\sqrt{89}-3\sqrt{18}+\frac{1}{2}\sqrt{32}\)
c)\(2\sqrt{5}+\sqrt{45}-\sqrt{20}+\frac{\sqrt{55}}{\sqrt{11}}\)
d)\(6\sqrt{\frac{1}{3}}-\frac{9}{3}-\frac{2}{\sqrt{3}-1}\)
Câu 4: Giải phương trình
\(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=60\)
Tính
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
\(\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\)
\(\left\{{}\begin{matrix}x^2-x+\sqrt{x}=xy+\sqrt{y+1}\\2x^3+1=x\sqrt{4x^2+5y^2-5}+9y\end{matrix}\right.\)
Tìm tập xác định của các hàm số sau:
1. y = \(\frac{\sqrt{x-1}+\sqrt{4-x^2}}{\left(x-2\right)\left(x+3\right)}\)
2. y = \(\frac{\sqrt{2-x}}{x^2-5x+4}\)
3. y = \(-\frac{\sqrt{2-3x}}{\sqrt{1+2x}}\)
\(\sqrt{x-1}+\sqrt{6-x}+\sqrt{-x^2+7x-6}=5\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
với \(a>0;a\ne1\)
giá trị nào của a để N=\(\frac{6}{M}\in Z\)
Rút gọn các biểu thức sau:
* A = \(\dfrac{x+4\sqrt{x}-2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}}.\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
* B = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
Cho hai biểu thức: A = \(\frac{x+3}{\sqrt{x}+3}\) và B = \(\left(\frac{x+3\sqrt{x}-2}{x-9}-\frac{1}{\sqrt{x}-3}\right).\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với x ≥ 0, x ≠ 9.
a, Tính giá trị của A khi x = 16
b, Rút gọn B.
c, Tìm giá trị nhỏ nhất của biểu thức P= A:B.