Tìm tập xác định của hàm số:
1) y = \(\dfrac{2x-1}{x^3-6x^2+11x-6}\)
2) y = \(\dfrac{\sqrt{3-2x}}{\sqrt[3]{x+1}+1}\)
3) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x+1}{x+2}khi_x\ge0\\\dfrac{\sqrt[3]{2x+1}}{x-1}khix< 0\end{matrix}\right.\)
Gi úp mình với cảm ơn các bạn
\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)
giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2=xy\\x^3-6y=2x-y^3\end{matrix}\right.\)
CÂU 1: giải phương trình sau:
\(x^2=-\sqrt{x+2019}+2019\)
CÂU 2: chứng minh: \(C_E\left(A\cup B\right)=\left(C_EA\right)\cap\left(C_EB\right)\) . trong đó A, B là con của E
đặc biệt viết lại là: \(E\backslash\left(A\cup B\right)=\left(E\backslash A\right)\cap\left(E\B\right)\)
* chú ý: \(E\in\left(A\cap B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
\(x\in\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
m.n giúp mk bài này ạ. thank m.n
\(\begin{cases}x\sqrt{6-y}+\sqrt{y\left(6-x^2\right)}=6\\x^2-3x+2=2\sqrt{y-2}\end{cases}\) Giải hệ phương trình
A=\(\left[\dfrac{x^2+2}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right].\left(1-\dfrac{1}{x}-\dfrac{x}{x^2}\right)\)
a ) Tìm điều kiện xác định
b ) Rút gọn A
c) Tìm x để A=2
d) Tính A khi x =\(\sqrt{\sqrt{4-2\sqrt{3}}}\)
1. Nghiêm của hệ phương trình \(\left\{{}\begin{matrix}\frac{3}{x+1}-\frac{4}{y-1}=1\\\frac{5}{x+1}+\frac{6}{y-1}=8\end{matrix}\right.\)là?
2. Cho các vecto \(\overrightarrow{a}=\left(4;-2\right),\overrightarrow{b}=\left(m;-1\right)\)tìm số m để \(\overrightarrow{a}\perp\overrightarrow{b}\)
Tìm tập xác định của các hàm số sau:
1. y = \(\frac{\sqrt{x-1}+\sqrt{4-x^2}}{\left(x-2\right)\left(x+3\right)}\)
2. y = \(\frac{\sqrt{2-x}}{x^2-5x+4}\)
3. y = \(-\frac{\sqrt{2-3x}}{\sqrt{1+2x}}\)
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)