PTĐTTNT :
x^2-(m+n)x+mn
`m) xz-yz-x^2+2xy-y^2 `
ptđttnt
\(xz-yz-x^2+2xy-y^2\)
\(=z\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(z-x+y\right)\)
m)xz−yz−x2+2xy−y2
\(=z.\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
= \(z.\left(x-y\right)-\left(x-y\right)^2\)
= (x-y).(z-x+y)
1) \(x^2-2x+1+x^2y-xy=\left(x-1\right)^2+xy\left(x-1\right)=\left(x-1\right)\left(x+xy-1\right)\)
2) \(x^2+6x+9+x^2y+3xy\)
\(=\left(x+3\right)^2+xy\left(x+3\right)\)
\(=\left(x+3\right)\left(x+xy+3\right)\)
PTĐTTNT:
xn + xn+3 -xn
\(x^n+x^{n+3}-x^n=x^{n+3}=x^n\cdot x^3\)
PTĐTTNT :
`-(x+2)+3(x^2-4)`
\(-\left(x+2\right)+3\left(x^2-4\right)\)
\(=3\left(x-2\right)\left(x+2\right)-\left(x+2\right)\)
\(=\left(x+2\right)\left[3\left(x-2\right)-1\right]=\left(x+2\right)\left(3x-7\right)\)
PTĐTTNT
`x^12+x^2+1`
x ³ + y ³ -2(x ² - y ²)
ptđttnt
\(x^3+y^3-2(x^2-y^2)\\=(x+y)(x^2-xy+y^2)-2(x-y)(x+y)\\=(x+y)[x^2-xy+y^2-2(x-y)]\\=(x+y)(x^2-xy+y^2-2x+2y)\\=(x+y)(-x^2-xy+2y+y^2)\)
PTĐTTNT : x^3 - x^2 - 7x + 15
\(\left(x+3\right)\left(x^2-4x+5\right)\)
x^3-x^2-7x+15=0
<=> x^3+3x^2-4x^2-12x+5x+15=0
<=> x^2(x+3)-4x(x+3)+5(x+3)=0
<=> (x+3)(x^2-4x+5)=0
<=> x+3=0 vì x^2-4x+5 khác 0
<=> x=-3
PTĐTTNT (x + 2)(x+3)(x+4)(x+5) – 8
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)\(=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-8\)
\(=\left(x^2+7x+11\right)^2-9\)
\(=\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
PTĐTTNT
(x+2)(x+3)(x+4)(x+5)-24
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)( * )
Đặt \(t=x^2+7x+10\), khi đó (*) trở thành:
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
Thay \(t=x^2+7x+10\) vào, ta được:
\(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
Vậy ...