Chứng minh
1 + 2 + 2^2 +2^3 +....+ 2^28 + 2^29 chia hết cho 3
M =3^1+3^2+3^3+...+3^28+3^29+3^30và chứng minh M chia hết cho 13
\(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(M=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{28}\left(1+3+3^2\right)\)
\(M=3.13+3^4.13...+3^{28}.13\)
\(M=13.\left(3+3^4...+3^{28}\right)⋮13\)
\(\Rightarrow dpcm\)
Cho
A= 1 +2 +2^2 + ...+ 2 ^ 28 + 2 ^29
. Chứng minh A chia hết cho 7
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\\ A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{27}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(1+2^3+...+2^{27}\right)\\ A=7\left(1+2^3+...+2^{27}\right)⋮7\)
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
Chứng minh rằng:
a) 1+3+32+33+...+3119 chia hết cho 13
b) 82+220 chia hết cho 17
c) 1028+8 chia hết cho 72
d) abcd chia hết cho 29
<=> a+3b+9c+27d chia hết cho 29
A) Cho A= 51+52+53+...+5100 chứng minh A chia hết cho 6 ( Gợi ý:Ghép đôi)
B) Cho B= 2+22+23+...+228+229+230 chứng minh B chia hết cho 7 (Gợi ý:Ghép ba)
\(a,A=5^1+5^2+...+5^{100}\)
\(\Rightarrow A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(\Rightarrow6\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow A⋮6\)
\(b,B=2+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(\Rightarrow B=2\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(\Rightarrow7\left(2+...+2^{28}\right)\)
\(\Rightarrow B⋮7\)
Chứng minh rằng: A = 2 + 22 + 23 + .....+ 228 + 229 + 230 chia hết cho 7
Chứng minh rằng : A= \(3+3^2+3^3+....+3^{28}+3^{29}+3^{30}\) chia hết cho 13.
\(A=3+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{29}+3^{30}\right)\)
\(A=1\left(3+3^2\right)+3^2\left(3+3^2\right)+....+3^{28}\left(3+3^2\right)\)
\(A=\left(1+3^2+...+3^{28}\right)\left(3+3^2\right)\)
\(A=13\left(1+3^2+...+3^{28}\right)⋮13\left(đpcm\right)\)
Chứng minh rằng:
a) (1+5+52+53+...529)chia hết cho 6
b) (1+3+3^2+3^3+...+3^29) chia hết cho 13
c) (1+2+2^2+2^3+...+2^120) chia hết cho 3
d) (1+2+2^2+2^3+...+2^120) chia hết cho 15
a) (1+5+52+53+...529)chia hết cho 6
Đặt (1+5+52+53+...529) = A
\(A=\left(1+5\right)+\left(5^2+5^3\right)+\left(5^4+5^5\right)....+\left(5^{28}+5^{29}\right)\)
\(A=\left(1+5\right)+5^2\left(5+1\right)+5^4\left(5+1\right)+...+5^{28}\left(5+1\right)\)
\(A=6+5^2.6+5^4.6+...+5^{28}.6\)
Vậy A chia hết cho 6
b) (1+3+3^2+3^3+...+3^29) chia hết cho 13
Đặt B= (1+3+3^2+3^3+...+3^29)
\(B=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{27}+3^{28}+3^{29}\right)\)
\(B=13+3^3\left(1+3+3^2\right)+....+3^{27}\left(1+3+3^2\right)\)
\(B=13+3^3.13+....+3^{27}.13\)
Vậy B chia hết 13
Câu c,d tương tự.Chúc bạn học tốt
Cho M=31+32+33+...+328+329+330.
Chứng minh M chia hết cho 13
Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)
M = 31 + 32 + 33 +...+ 328 + 329 + 330
M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )
M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)
M = 3 .13 +...+ 328.13
\(\Rightarrow M⋮13\)(đpcm)
!!!
Ta có \(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{28}.13\)
\(=13.\left(3+3^4+..+3^{28}\right)\) chia hết cho 13.
Vậy M chia hết cho 13