Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Hoc Bui
Xem chi tiết
Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Xuân Trà
Xem chi tiết
LuKenz
Xem chi tiết
roronoa zoro
Xem chi tiết
Lê Hà Vy
Xem chi tiết
tam Nguyen
23 tháng 5 2019 lúc 18:45

hỏi j v

Hùng Hoàng
Xem chi tiết
Lê Hà Vy
Xem chi tiết
T.Ps
20 tháng 5 2019 lúc 17:16

#)Hỏi j đi bn, bn ph hỏi cái j chứ làm lun rùi còn để cộng đồng ngắm ak ???

Rinu
20 tháng 5 2019 lúc 17:16

Bó cả tay lẫn chân !!! Bất lực như gặp cực hình !

Rinu
20 tháng 5 2019 lúc 17:18

Chắc là bạn ấy hỏi bạn ấy làm có đúng ko ha gì đó ?

Cheerry. ryy
Xem chi tiết
ta thi ngoc anh
6 tháng 10 2019 lúc 15:14

E=\(\left(\frac{\sqrt{x^3}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\left(\frac{x-1}{\sqrt{x}}\right)\cdot\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

= \(\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\) +\(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\right)\cdot\left(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

=\(\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right)+\frac{1}{\sqrt{x}}\cdot\left(2x+2\right)\)

=\(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\frac{2x+2}{\sqrt{x}}\)

=\(\frac{2\sqrt{x}+2x+2}{\sqrt{x}}\)

@Nk>↑@
6 tháng 10 2019 lúc 15:22

ĐKXĐ:\(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có:

+)\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{2\sqrt{x}}{\sqrt{x}}=2\)

+)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}=\frac{2\left(x+1\right)}{x-1}\)

\(\Rightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)=\frac{x-1}{\sqrt{x}}.\frac{2\left(x+1\right)}{x-1}=\frac{2\left(x+1\right)\sqrt{x}}{x}\)

Thay vào E ta được: \(E=2+\frac{2\left(x+1\right)\sqrt{x}}{x}\)