Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thy Nguyễn
Xem chi tiết
subjects
28 tháng 12 2022 lúc 12:17

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

nguyễn thị  thúy hân
Xem chi tiết
nguyển văn hải
23 tháng 6 2017 lúc 14:04

đề thiếu bạn ơi

hoặc đề sai

..............

uzumaki naruto
23 tháng 6 2017 lúc 14:09

bn viết thiếu đề nhé

A= 71 + 72 + 73 + 74 = (71+74)+(72+73) = 145 + 145 = 290 chia hết cho 5

=> A=........ chia hết cho 5

B=  106-57 = 26. 56 - 5= 56 ( 26 - 5) =(56 . 59) chia hết cho 59 => B chia hết cho 59

uzumaki naruto
23 tháng 6 2017 lúc 14:10

A bn viết thiếu chỗ 7 => 71 đấy

Rosie
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 12 2021 lúc 21:07

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

Akai Haruma
23 tháng 12 2021 lúc 21:09

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

Châm thik Nặc nô =))))
Xem chi tiết
Lú Toán, Mù Anh
12 tháng 11 2021 lúc 14:37

M = 7 + 72 + 73 + 74 + ..... + 7100 

M = 7+(1+7)+73+(1+7)+...+799+(1+7)

M = 7x8+73x8+...+799x8

M = 8x(7+73+...+799)

mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8

Vậy M chia hết cho 8

Bùi Phương Linh
Xem chi tiết
hà huy minh hiếu
Xem chi tiết
Huy Vu
7 tháng 11 2021 lúc 18:08

 á à thg hếu cx hỏi trên này cơ à XDDD

 

Thầy Hùng Olm
Xem chi tiết
Lê Song Phương
28 tháng 12 2022 lúc 18:21

Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)

\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)

...

\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)

Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)

hello !!!!!
28 tháng 12 2022 lúc 18:16

bài kt cuối kì phải tự làm  bạn ơi

Trần Phương Thảo
28 tháng 12 2022 lúc 18:27

\(A=7+7^2+7^3+...+7^{120}\)

  \(=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)

  \(=7.\left(1+7+7^2\right)+7^4.\left(1+7+7^2\right)+...+7^{118}.\left(1+7+7^2\right)\)

  \(=7.57+7^4.57+..+7^{118}.57\)

   \(=57.\left(7+7^4+...+7^{118}\right)\)

⇒ A chia hết cho 57

 

đồng khánh bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 14:17

a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)

b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)

c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)

\(=21\left(1+...+4^{96}\right)⋮21\)

d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{35}\right)⋮8\)

\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19

Anh Thư
Xem chi tiết
Đặng Hoàng Lâm
4 tháng 1 2022 lúc 22:33

a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)

Khách vãng lai đã xóa
Anh Thư
15 tháng 1 2022 lúc 16:46

Cảm ơn bạn nhiều nha Đặng Hoàng Lâm!

Khách vãng lai đã xóa