Cho : A = 7 + 72 +73 +...+ 749
CMR : A - 7 chia hết cho 19
Cần lời giải nhá
Cho A =7 + 72 + 73 + ... + 7119 + 7120. Chứng minh chia hết cho 57
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
A= 7+72+73 +74 chia hết cho 50
B= 106-57 chia hết cho 59
đề thiếu bạn ơi
hoặc đề sai
..............
bn viết thiếu đề nhé
A= 71 + 72 + 73 + 74 = (71+74)+(72+73) = 145 + 145 = 290 chia hết cho 5
=> A=........ chia hết cho 5
B= 106-57 = 26. 56 - 57 = 56 ( 26 - 5) =(56 . 59) chia hết cho 59 => B chia hết cho 59
Câu 3: Cho A = 7 + 72 + 73 + ... + 7119 + 7120. Chứng minh rằng A chia hết cho 57.
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
Mn giải cho e ặ !
M = 7 + 72 + 73 + 74 + ..... + 7100
M chia hết cho 8
\gấp ặ/
M = 7 + 72 + 73 + 74 + ..... + 7100
M = 7+(1+7)+73+(1+7)+...+799+(1+7)
M = 7x8+73x8+...+799x8
M = 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy M chia hết cho 8
Cho A = 7 + 72 + 73 + ... + 7119 + 7120. Chứng minh rằng A chia hết cho 57.
giúp mình với
Cho A = 7 + 72 + 73 + 74 + … + 7119 + 7120. Chứng minh A chia hết cho 57
NL:ai có nick hỏi đáp 247 không cho mình
Cho A = 7+72+73+...7120
Chứng minh A chia hết 57?
(Kiểm tra cuối học kỳ 1 - THCS Phú Cát)
Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)
\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)
...
\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)
Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)
\(A=7+7^2+7^3+...+7^{120}\)
\(=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(=7.\left(1+7+7^2\right)+7^4.\left(1+7+7^2\right)+...+7^{118}.\left(1+7+7^2\right)\)
\(=7.57+7^4.57+..+7^{118}.57\)
\(=57.\left(7+7^4+...+7^{118}\right)\)
⇒ A chia hết cho 57
a) tại sao tổng 22+23+24+25chia hết cho 3
b)tại sao tổng của420+421+422+423 chia hết cho 5
c)cho A=1+4+42+....+498 (A chia hết cho 21)
d)cho B=7+72+73+....+736 B chia hết cho 3, B chia hết cho 8 và B chia hết cho 19
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
Tìm x biết x là số nguyên
a) 12 chia hết cho 3x+1
b) 2x+3 chia hết cho 7
CÁC BẠN CHO MÌNH LỜI GIẢI CHI TIẾT VÀ DỄ HIỂU NHẤT NHÁ! CẢM ƠN CÁC BẠN NHÌU! :))
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
Cảm ơn bạn nhiều nha Đặng Hoàng Lâm!