\(y=x^2+x+m\)
tìm m để ĐTHS cắt Õ tại 2 điểm pb có hoành độ x1 ; x2 t/m \(A=x_1^2\left(x_1+1\right)+x^2_2\left(x_2+1\right)\) đạt GTLN
cho hàm số y=(3m-2)x -2m
a.xác định m để ĐTHS cắt trục hoành trị điểm có hoành độ bằng 2
b,xác định m để ĐTHS cắt trục tung trị điểm có tung độ bằng 2
c,xác định tọa độ giao điểm của 2 ĐTHs ứng với các giá trị của m tìm được ở câu a,b
a) Do DTHScat truc hoanh nhu tren => y=0; x=2
Thay y=0; x=2 vao ham so tren ta co: 0=(3m-2)2-2m => 6m-4-2m=0 =>4m-4=0 =>m=1
b) Do DTHS tren cat truc tung nhu tren => x=0; y=2
Thay x=0; y=2 vao ham so tren ta co: 2=(3m-2)0-2m => -2m =2 => m=-1
Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2
a) lập bảng biến thiên và vẽ đồ thị hàm số y = x\(^2\)+3x+2
b) tìm m để đường thẳng y = -x+m cắt (P) tại 2 điểm phân biệt có hoành độ dương
c) tìm m để đường thẳng y = -2x+3m cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn x\(_1\)= 3x\(_2\)
Cho hàm số y mx 2 = − (d)
1) Tìm m để (d) cắt Ox tại điểm có hoành độ là 2
2) Tìm m để (d) cắt Ox tại điểm có hoành độ lớn hơn 1
3) Tìm m để (d) cắt đường thẳng y = x - 2m tại điểm có hoành độ là 1
4) Tìm m để (d) cắt y = x + m - 1 tại điểm thuộc trục tung
5) Tìm m để (d) cắt Ox, Oy tạo thành tam giác có diện tích là 2
6) Tìm m để (d) cắt Ox, Oy tạo thành tam giác vuông cân
7) Tìm m để (d) cắt Ox, Oy tạo thành tam giác vuông có cạnh huyền là căn 5
cho (p)y=x2 và d y=6x-m+1 .tìm các giá trị của m để (p) và d cắt nhau tại điểm 2 pb có hoành độ gđ x1,x2 thoản mãn |2x1|+|x2|=5
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
a: Thay x=0 và y=2 vào (d), ta được:
1-m=2
=>m=-1
Cho parabol (P): y= x2 và (d): y= 2( m-1)x + m
a) Tìm m để (d) cắt (P) tại một điểm có hoành độ bằng 2.
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung có hoành độ lần lượt là x1; x2 sao cho x12 + 2 (m-1)x2=6
a: f(2)=2^2=4
thay x=2 và y=4 vào (d), ta được:
4(m-1)+m=4
=>5m-4=4
=>m=8/5
b: PTHĐGĐ là;
x^2-2(m-1)x-m=0
Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0
=>m>0
x1^2+2(m-1)x2=6
=>x1^2+x2(x1+x2)=6
=>x1^2+x2^2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-(-m)-6=0
=>4m^2-8m+4+m-6=0
=>m=2(nhận) hoặc m=-1/4(loại)
Cho parabol (P): y = -x2 và đường thẳng (d): y = (2 - m).x + m - 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1| + x22 = 2
Tìm tập hợp các gtri của m để đt y=-1 cắt đồ thị hàm số : \(y=x^4-\left(3m+2\right)x^2+3m\) tại 4 điểm pb có hoành độ nhỏ hơn 2
phương trình hoành độ giao điểm của f(x) với y = -1 là
x4 - (3m + 2)x2 + 3m = -1
⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)
Đặt x2 = t (ĐK : t ≥ 0)
Phương trình trở thành
t2 - (3m + 2)t + 3m + 1 = 0 (2)
Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4
⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)
⇒ \(\dfrac{-1}{3}< m< 1\)
Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)