Cho số thực x thỏa mãn:\(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=7\)
Cho số thực x thỏa mãn \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
Tính giá trị biểu thức \(A=\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Cho x thỏa mãn
\(\sqrt{x^2-6x+36}\)+\(\sqrt{x^2-6x+64}\)=7
TÌm GTBT : A= \(\sqrt{4x^2-24x+256}\)-2.\(\sqrt{x^2-6x+36}\)
đặt \(\sqrt{x^2-6x+36}=\)M;\(\sqrt{x^2-6x+64}=\)N ,hiển nhiên M\(\ne\)N
M+N=7 <=>(M+N)(M-N)=7(M-N) <=>M2-N2=7(M-N) <=>-28=7(M-N) <=>N-M=4
A=2N-2M=2.4=8
Đặt \(\sqrt{x^2-6x+36}=a\ge0\Rightarrow\sqrt{x^2-6x+64}=\sqrt{a^2+28}\)
Vậy ta có phương trình :
\(a+\sqrt{a^2+28}=7\Leftrightarrow\sqrt{a^2+28}=7-a\Leftrightarrow\hept{\begin{cases}a\le7\\a^2+28=a^2-14a+49\end{cases}\Leftrightarrow a=\frac{3}{2}}\)
ta có : \(A=\sqrt{4\left(x^2-6x+36\right)+112}-2\sqrt{x^2-6x+36}=\sqrt{4a^2+112}-2a=8\)
\(\sqrt{x^2-6x+36}-\sqrt{x^2-6x+64}=7\)
<=> \(\sqrt{x^2-6x+64}=\sqrt{x^2-6x+36}-7\)(*)
Ta có :
\(A=\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
\(=\sqrt{4\left(x^2-6x+64\right)}-2\sqrt{x^2-6x+36}\)
\(=2\left(\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\right)\). Thay (*), ta có :
\(A=2\left(\sqrt{x^2-6x+36}-7-\sqrt{x^2-6x+36}\right)=2\left(-7\right)=-14\)
Vậy A = -14
Cho\(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
Tính: \(\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
1) Giải PT : (x2 - 6x - 7)2 - 9(x2 - 4x - 3)2 = 0
2) Cho x, y thỏa mãn PT \(\sqrt{x+y-\frac{2}{3}}=\sqrt{x}+\sqrt{y}-\sqrt{\frac{2}{3}}\). Tính x.y
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho A=\(\sqrt{x^4+4x^3+6x^2+4x+2}\) +\(\sqrt{y^4-8x^3+24y^2-32y+17}\)với x, y là số thực thỏa mãn (2+x)(y-1)=9/4
Tính giá trị của A
Có tất cả bao nhiêu số thực \(x\) thỏa mãn \(6x^2-4\sqrt{3x^2}+2x=0\)
A. 1
B. 2
C. 3
D. 0
(do it right... i'll like that answer)