So sanh
a, 224và316
b,2300và 3200
c,715và 720
Tìm xEN
a. 720 : [118- (2x + 10)]=60
b. 2840+ [(999 - 9x ) : 60 ] x 24 = 3200
c. ( 3x - 48 ) x 6 = 33 . 22 - 23 . 32
so sánh A= -15/2300 + -17/3200
B=-17/2300 + -15/3200
khong quy dong tu so va mau so hay so sanh
a) 13/17 va 15/19
tim x biet
a) \(\frac{2}{3}\times x+\frac{3}{4}=3\)
b, 720:[41-(2x x-5)]=120
a)13/17 < 15/19
a) 2/3 x X + 3/4 = 3
2/3 x X = 3 - 3/4
2/3 x X = 9/4
X = 9/4 : 2/3
X = 27/8
a. Ta có : \(\frac{13}{17}=\frac{247}{323};\frac{15}{19}=\frac{255}{323}\)
Vì 255 > 247 nên 247/323 < 255/323
Hay \(\frac{13}{17}< \frac{15}{19}\)
b. \(\frac{2}{3}\times x+\frac{3}{4}=3\)
\(\frac{2}{3}\times x=3-\frac{3}{4}\)
\(\frac{2}{3}\times x=\frac{9}{4}\)
\(x=\frac{9}{4}:\frac{2}{3}\)
\(x=\frac{27}{8}\)
c. \(720:\left[41-\left(2\times x-5\right)\right]=120\)
\(\left[41-\left(2\times x-5\right)\right]=720:120\)
\(41-\left(2\times x-5\right)=6\)
\(2\times x-5=35\)
\(2\times x=40\)
\(x=20\)
a)\(\frac{13}{17}>\frac{15}{19}\)
b)\(720\div[41-(2x\times5)]=120\) c)\(\frac{2}{3}\times x+\frac{3}{4}=3\)
\(41-(2x\times5)=270\div120\) \(\frac{2}{3}\times x=3-\frac{3}{4}\)
\(41-(2x-5)=6\) \(\frac{2}{3}\times x=\frac{9}{4}\)
\(2x-5=41-6\) \(x=\frac{9}{4}\div\frac{2}{3}\)
\(2x-5=35\) \(x=\frac{9}{4}\times\frac{3}{2}\)
\(2x=35+5\) \(x=\frac{27}{8}\)
\(2x=40\)
\(x=40\div2\)
\(x=20\)
1) tìm x , biết :
a) 720 : [ 118 - ( 2 x - 10 ] = 60 ;
b) 2840 + [( 999 - 9 x ) : 60 ] . 24 = 3200 ;
c) ( 3 x - 48 ) . 6 = 3 mũ 3 . 2 mũ 2 - 2 mũ 3 . 3 mũ 2
a, 720:[118-(2x -10) ]=60
[118-(2x-10)]=720:60
118-(2x-10)=12
2x-10=118-12
2x-10=106
2x =106+10
2x =116
x=116:2
x=58
1,Tìm x:
a,2x=16 b,x3=27 c,x50=x d,(x - 22)=16
2,So sánh:a,2300 và 3200
b,3500 và 7300
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a,`
`2^x = 16`
`=> 2^x = 2^4`
`=> x = 4`
Vậy, `x = 4`
`b,`
`x^3 = 27`
`=> x^3 = 3^3`
`=> x = 3`
Vậy, `x = 3`
`c,`
\(x^{50}=x\)
`=>`\(x^{50}-x=0\)
`=>`\(x\left(x^{49}-1\right)=0\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^{49}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, `x \in {0; 1}`
`d,`
`(x-2^2)=16`
`=> x - 2^2 = 16`
`=> x = 16 + 2^2`
`=> x = 20`
Vậy, `x = 20`
`2,`
`a,`
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì `8 < 9 =>`\(8^{100}< 9^{100}\)
`=>`\(2^{300}< 3^{200}\)
Vậy, \(2^{300}< 3^{200}\)
`b,`
Ta có:
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
Vì `243 < 343 =>`\(243^{100}< 343^{100}\)
`=>`\(3^{500}< 7^{300}\)
Vậy, \(3^{500}< 7^{300}.\)
Bài 1: So sánh
1/ a) 2300 và 3200 b) 9920 và 999910 c) 3500 và 7300
d) 202303 và 303202 e) 10750 và 7375
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)
\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)
So snhs các cặp số sau :
a. A = 275 và B = 2433
b. A = 2300 và B = 3200
cho A=1/1*2+1/3*4+...+1/99.100
B=7/2
C=5/6
so sanh A&B va so sanh A& C
so sanh A = a*b /a^2+b^2 va B = a^2+b^2/(a+b)^2
a) so sanh a/b (b>0) va a+n/b+n (n thuoc N*)
b)cho a,b,c thuoc z b>0
so sanh a/b vs a+2016/b+2016
c) cho a/b<c/d (b.d >0)
cm: a+c/b+d<c/d
So sanh a,b,c,biet rang a/b=b/c/=c/a
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/b = b/c = c/a = (a + b + c)/(b + c + a) = 1
Do a/b = 1 => a = b (1)
Do b/c = 1 => b = c (2)
Do c/a = 1 => c = a (3)
Từ (1); (2); (3) => a = b = c.