Tam giác ABC có góc A =60 độ .Các dường cao AH và CK cắt nhau tại I
a)Chứng minh \(S_{ABC}=\frac{\sqrt{3}}{4}.AB.AC\)
b) Biết góc BAH =x, CAH =y
TÍnh giá trị của M=sin x .cos y +sin y .cos x
Bài 1: Cho tam giác MNP vuông tại M, MK là đường cao, MN=6,25cm; NP=10cm.
a, Tính Mk và giải tam giác vuông MKP.
b, Qua P kẻ đường thẳng d vuông góc với MP và cắt MK tại I. Tính PI và độ dài đường phân giác MQ (Q thuộc NP) của góc NMP.
Bài 2: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Gọi I,K thứ tự là hình chiếu của H trên AB,AC.
a, Biết BH=2, HC=8. Tính AH, AB, AC.
b, Biết sinB+3cosC=1. Tính tỉ số lượng giác góc B.
c, Chứng minh: \(\frac{1}{^{HI^2}}+\frac{1}{HC^2}=\frac{1}{HK^2}+\frac{1}{HB^2}\)
Bài 3: Cho tam giác ABC có góc A=60 độ, đường cao AH và CK cắt nhau tại I.
a, Chứng minh: CH.CB=CI.CK.
b, Chứng minh: SABC = \(\frac{\sqrt{3}}{4}\).AB.AC
c, Cho góc BAH=x, góc CAH=y. Tính M=sinx.cosy+siny.cosx.
cho tam giác abc có A^=90 độ AB= 6cm và AC = 8cm a/ tính Bc? b/ tính sin B và Tan C? C/ gọi AH là đường cao tam giác ABC , tính cos BAH^,d/ Gọi M là trung điểm Bc từ M kẻ đường thẳng vuông góc với BC cắt AC tại T tính độ dài AT?
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Cho tam giác ABC nhọn, kẻ các đường cao AH, BI, CK. Chứng minhn rằng:
a) \(S_{ABC}=\frac{1}{2}AB.AC.\sin A\)
b) \(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
Các bạn giải nhanh giúp mình nha cầu xin các bạn đấy :(((
a)
Ta có:
Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)
\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)
b)
\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)
\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)
\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)
Cho tam giác ABC nội tiếp đường tròn (O) . Các đường cao AK,BI cắt nhau tại H . Gọi D,E,F lần lượt là tâm của các đường tròn ngoại tiếp tam giác AIH , AKC , BKI
a) Chứng minh OEDF là hình bình hành
b) CH cắt AB ở J . CHứng minh : AK.BI.CJ = AB.BC.CA.cos BAC.sin ACB . sin CBA
AK.BI.CJ = AB.BC.CA. cos CAK . cos ABI . cos BCJ
c) chứng minh sin ABC . sin ACB - cos ABC. cos ACB = cos BAC d) CHo biết BAC=60 độ . AB=30mm , BC=15căn6m hãy giải tam giác ABC
cho tam giác ABC vuông tại a và có AB=3, AC=4. kẻ đường cao AH. hạ HK vuông góc AB, HI vuông góc AC . Tính:
a,tính diện tích AKHI
b, P=\(\frac{\cos B\sin C+2\sin^2C-3\cos^2B}{^{ }\cos B+2sinC}\)
Bài 1: cho hình thang ABCD có 2 cạnh bên AD và BC bằng nhau, đường chéo AC vuông góc với BC biết AD=5a, AC=12a
a) tính \(\frac{\sin B+\cos B}{\sin B-\cos B}\)
b)tính chiều cao của hình thang ABCD
Bài 2: cho tam giác cân ABC có AB = AC =10cm, BC = 16cm, trên đường cao AH lấy I sao cho AI= 1/3 AH. Kẻ CX song song với AH, CX cắt BI tại D.
a) tính các góc của tam giác ABC
b) tính diện tích ABCD
Bài 3: cho hình thang đáy nhỏ 15 cm, 2 cạnh bên bằng nhau và bằng 25cm, góc tù là 120 độ. tính chu vi và diện tích
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Giúp 4 bài này với
Bài 1:Cho tam giác ABC vuông tại A.Đường cao AH. Chứng minh a)B=CAH b)C=CAH
Bài 2:Cho tam giác ABC vuông ở A. Tia phân giác BM,CN của góc B và góc C cắt nhau ở I.Tính BIC
Bài 3: Cho tam giác ABC, A=90độ,AH vuông với BC.Tia phân giác BAH và C cắt nhau ở K. Cm AK vuông góc với CK
Bài 4:Cho tam giác ABC, Điểm M ở miền trong tam giác ABC.Chứng minh BMC > BAC
Cho tam giác ABC vuông tại A. góc C nhỏ hơn 45 độ, trung tuyến AM, đường cao AH. Biết BC = a, AC = b và AH = h
a) Tính sin C, cos C, sin 2C theo a,b,h
b) CMR sin 2C = 2 sin C. cos C