tùy theo m tìm A=(-∞;m) \(\cap\) (5;+∞)
Cho hai nửa khoảng A = (-∞; m] và B = [5; +∞). Tùy theo giá trị của m hãy tìm A ∩ B.
- Nếu m = 5 thì A ∩ B = 151;
- Nếu m < 5 thì A ∩ B = Ø;
- Nếu m > 5 thì A ∩ B = [5; m];
Chúc bạn học tốt ~
- Nếu m = 5 thì A ∩ B = 151;
- Nếu m < 5 thì A ∩ B = Ø;
- Nếu m > 5 thì A ∩ B = [5; m];
Chúc bạn học tốt ~
- Nếu m = 5 thì A ∩ B = 151;
- Nếu m < 5 thì A ∩ B = Ø;
- Nếu m > 5 thì A ∩ B = [5; m];
Chúc bạn học tốt ~
Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.
Tìm m sao cho:
a, \(A\cup B=R\) biết \(A=(-\infty;3];B=[m;+\infty)\)
b, \(C\cup D\) là một khoảng (tùy theo m xác định khoảng đó), biết \(C=\left(m;m+2\right);D=\left(-3;1\right)\)
Tùy theo chữ số tận cùng của a, hãy tìm chữ số tận cùng của a
Tùy theo m tìm tập xác định của hàm số sau:
\(y=\frac{\sqrt{x-4}+\sqrt{m-x}}{\sqrt{6-x}}\)
cho số thực m<0 tùy theo giá trị của m. hãy tìm (\(-\infty\);m) giao với (\(\frac{1}{3m};+\infty\))
m<0 nên m<1/3m
\(\Leftrightarrow\left(-\infty;m\right)\cap\left(\dfrac{1}{3m};+\infty\right)=\varnothing\)
Cho tam giác đều ABC nội tiếp (O; R). M là điểm tùy ý trên đường tròn. Tìm giá trị lớn nhất của
S = MA2 + 2MB2 - 3MC2 theo R
Gọi cạnh tam giác là a thì \(a=R\sqrt{3}\)
Do tính đối xứng của đường tròn và tam giác đều, không mất tính tổng quát, giả sử M nằm trên cung nhỏ BC
\(\Rightarrow\widehat{BMC}=180^0-\widehat{BAC}=120^0\)
\(\Rightarrow AM.BC=AB.CM+AC.BM\Leftrightarrow AM=BM+CM\)
\(\Rightarrow S=\left(BM+CM\right)^2+2BM^2-3CM^2\)
\(=3BM^2+2BM.CM-2CM^2\)
Lại có: \(BC^2=BM^2+CM^2-2MB.MC.cos\widehat{BMC}\)
\(=BM^2+CM^2+MB.MC\Rightarrow MB.MC=3R^2-BM^2-CM^2\)
\(\Rightarrow S=6R^2+BM^2-4CM^2\)
Gọi I là điểm thỏa mãn \(\overrightarrow{BI}-4\overrightarrow{CI}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BC}\)
\(\Rightarrow BI=\dfrac{4\sqrt{3}}{3}R\) ; \(CI=\dfrac{\sqrt{3}}{3}R\)
\(S=6R^2+\left(\overrightarrow{BI}+\overrightarrow{IM}\right)^2-4\left(\overrightarrow{CI}+\overrightarrow{IM}\right)^2\)
\(S=6R^2+BI^2-4CI^2-3IM^2=10R^2-3IM^2\)
\(S_{max}\) khi \(IM_{min}\Rightarrow M\equiv C\Rightarrow S=CA^2+2CB^2=9R^2\)
Hmm, sao lại không có nhỉ, thử cách khác.
O đồng thời là trọng tâm tam giác
\(S=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)^2+2\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2-3\left(\overrightarrow{MO}+\overrightarrow{OC}\right)^2\)
\(=OA^2+2OB^2-3OC^2+2\overrightarrow{MO}\left(\overrightarrow{OA}+2\overrightarrow{OB}-3\overrightarrow{OC}\right)\)
\(=2\overrightarrow{MO}\left[\overrightarrow{CO}+\overrightarrow{OA}+2\overrightarrow{CO}+2\overrightarrow{OB}\right]\)
\(=2\overrightarrow{MO}\left(\overrightarrow{CA}+2\overrightarrow{CB}\right)=2\overrightarrow{MO}.\overrightarrow{CE}\)
Với E là điểm sao cho \(\overrightarrow{CA}+2\overrightarrow{CB}=\overrightarrow{CE}\)
Ta có: \(AE=CD=2BC=2\sqrt{3}R\) ; \(\widehat{CAE}=120^0\)
\(\Rightarrow CE=\sqrt{AC^2+AE^2-2AC.AE.cos120^0}=R\sqrt{21}\)
\(S=2\overrightarrow{MO}.\overrightarrow{CE}=2MO.CE.cos\left(\widehat{MO};\overrightarrow{CE}\right)=2R.R\sqrt{21}.cos\left(\overrightarrow{MO};\overrightarrow{CE}\right)\)
\(=2\sqrt{21}R^2.cos\left(\overrightarrow{MO};\overrightarrow{CE}\right)\le2\sqrt{21}R^2\)
\(\Rightarrow S_{max}=2\sqrt{21}R^2\) khi \(\overrightarrow{OM}\) cùng chiều \(\overrightarrow{CE}\)
Lần này chắc là đúng rồi, sai sót của bài làm cũ ở chỗ biểu thức S không đối xứng A; B; C nên việc giả sử M nằm trên cung nhỏ BC là sai
Update thêm cái hình vẽ cho bạn dễ hình dung
Cho tam giác đều ABC cạnh a.
a, Cho M là một điểm trên đường tròn ngoại tiếp tam giác ABC. Tính MA2 + MB2 + MC2 theo a.
b, Cho đường thẳng d tùy ý, tìm điểm N trên đường thẳng d sao cho NA2 + NB2 + NC2 nhỏ nhất.
a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.
Lại có:
+ O là trọng tâm tam giác nên
+ Bán kính đường tròn ngoại tiếp tam giác:
Ta có: NA2 + NB2 + NC2 ngắn nhất
⇔ NO2 ngắn nhất vì R không đổi
⇔ NO ngắn nhất
⇔ N là hình chiếu của O trên d.
trả lời theo ý j tùy m .n
Where do you live?
-> I live in Ho Chi Minh City.
What can you do there?
-> I can travel across the city by bus or motorbike.
Do you like it? Why/Why not?
-> Yes, I do like it. Because I can visit many places such as Duc Ba Cathedral....
Bạn tham khảo nha
I live in Binh Thuan province
I can go swimming, go supermarket, hang out with my friends,....
Yes, i do. Because this place is convenient, the air is fresh and cool
Căn cứ vào đâu để phân loại kim loại đen A. Thành phần có sắt và cacbon,tùy theo tỷ lệ cacbon B. Các nguyên tố tham gia C. Thành phần có kim loại và cacbon,tùy theo tỷ lệ cacbon D. Thành phần có đồng,nhôm và cacbon,tùy theo tỷ lệ cacbon
B. Các nguyên tố tham gia
( Bạn có thể xem trong SGK- Công nghệ 8 trang 61 )
- Dựa vào tỉ lệ cacbon và các nguyên tố tham gia, người ta chia kim loại đen thành 2 loại chính là gang và thép.