chứng minh rằng góc kề đáy của 1 tam giác cân là góc nhọn
giúp mk với !!
Chứng minh rằng góc kề đáy của một tam giác cân là góc nhọn.
Góc kề đáy hay là góc ở đáy ?
Góc ở đáy nha
Tam giác cân=> 2 góc kề đáy bằng nhau
Gọi 2 góc kề đáy là\(\widehat{A}v\text{à}\widehat{B}\)tức \(\widehat{A}=\widehat{B}\)
Giả sử \(\widehat{A}\ge90\Rightarrow\widehat{A}+\widehat{B}\ge180\text{đ}\text{ộ}\Rightarrow v\text{ô}l\text{ý}\)
Nên ta có đpcm
6. Cho tam giác ABC có I là giao điểm 3 đường phân giác của tam giác.
a. Hãy tính số đo góc BIC theo số đo góc A.
b. Kẻ BH vuông góc với AI. Chứng minh rằng góc IBH = góc ICA
7. Chứng minh rằng, trong tam giác cân, đường trung tuyến ứng với cạnh đáy cũng là đường phân giác
của tam giác đó.
8. Cho tam giác ABC vuông tại A, AB=3cm, AC=4cm, BC=5cm. AD, BE, CF là 3 đường phân giác của
tam giác đồng quy tại điểm I. Gọi K, G, H lần lượt là chân đường vuông góc kẻ từ I tới 3 cạnh BC, CA,
AB của tam giác.
a. Chứng minh tam giác AIH vuông cân.
b. Tính tổng khoảng cách từ I tới 3 cạnh của tam giác.
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
AM là cạnh chung
BM = MC ( gt )
\(\Rightarrow\) Tam giác ABM bằng tam giác ACM ( c.c.c)
chứng minh rằng góc ở đáy của tam giác cân bao giờ cũng là góc nhọn
Giả sử 1 góc ở đáy lớn hơn hoặc bằng 90o
=>góc ở đáy còn lại cũng lớn hơn hoặc bằng 90o
=>Tổng 2 góc đó sẽ lớn hơn hoặc bằng 180o
=>góc còn lại nhỏ hơn hoặc bằng 0o (định lí tổng 3 góc trong 1 tam giác)
Vậy góc ở đáy không thể lớn hơn hoặc bằng 90o
=>nó nhỏ hơn 90o
=>góc ở đáy là góc nhọn(đpcm)
vì góc ở đáy không bao giờ là vuông vì nó không thể =90độ => nó chỉ là góc nhọn
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
cho tam giác ABC cân tại A .Gọi M là trung điểm của BC
a, Chứng minh AM vuông góc với BC
b , Chứng minh góc BAM = góc CAM
c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K chứng minh tam giác MHK cân tại M
d, Chứng minh tam giác AHK cân tại A
e, Chứng minh HK song song với BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc BAC
hay góc BAM= góc CAM
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
hay ΔMHK cân tại M
d: Xét ΔAHK có AH=AK
nên ΔAHK cân tại A
e: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
bài 1 : Chứng minh rằng trong hình thang có nhiều nhất là hai góc tù, có nhiều nhất là hai góc nhọn.
bài 2: Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu của hai đáy.
bài 3 : Cho tam giác ABC vuông cân tại A, BC = 2 cm. Ở phía ngoài tam giác ABC, vẽ tam giác ACE vuông cân tại E.
a. Chứng minh rằng AECB là hình thang vuông
b. Tính các góc và các cạnh của hình thang AECB
Mn ai lm nhanh mk tjck nha !!!
Bài 2:
kẻ hình thang ABCD
kẻ 2 đường cao AH và BK nối B với H
xét tam giác ABH và tam giác KBH
có ^ABH = ^KBH ( 2gocs so le trong )
HB chung
=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )
=> AB =HK ( 2 cạnh tương ứng )
xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)
xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)
từ (1) và (2) => BC+AD >KC+HD
ta lại có DH+DK +HK =DC
mà AB=HK (C/m )
=> DH+DK+AB =dc
ta có DC-AB = DH+DK+AB-AB= DH+DK
mà DH+DK<BC+AD(c/m)
=>DC -AB< BC+AD
vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy