Cho tam giác ABC , M,N lần lượt là trung điểm của AB và AC
a,Bmnc là hình thang
Cho MN = 3,5 cm tính BC
Gọi e là trung điểm của BC tứ giác MNCE là hình gì
Mình chỉ cần câu cuối cùng thôi mọi người giúp mình đi
Cho tam giác ABC( AB < AC). Gọi M,N lần lượt là trung điểm của các cạnh AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Cho MN = 3,5 cm. Tính độ dài đoạn thẳng BC.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác MNCE là hình bình hành.
a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)
Vậy: MNCB là hình thang (đpcm)
==========
b/ Do MN là đường trung bình của △ABC
Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)
==========
c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)
- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)
Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)
Cho tam giác ABC có M , N lần lượt là trung điểm của AB , AC .
a ) Chứng minh : Tứ giác BMNC là hình thang .
b ) Cho BC = 6 cm . Tính độ dài MN .
c ) Gọi E là trung điểm của BC . Chứng minh : Tứ giác MNCE là hình bình hành .
d ) Gọi D là điểm đối xứng của M qua N . Chứng minh : Tứ giác BMDC là hình bình hành .
e ) Gọi O là giao điểm của DB và MC . Chúng minh E , O , N thẳng hàng .
Cho tam giác ABC có M, N lần lượt là trung điểm của AB , AC . Cho BC = 6cm
a ) Chứng minh tứ giác BMNC là hình thang
b) Tính độ dài MN
c) Gọi E là trung điểm của BC . Chứng minh tứ giác MNCE là hình bình hành
d) gọi D là điểm đối xứng của M qua N . Chứng minh tứ giác BMDC là hình bình hành . Gọi O là giao điểm của DB và MC . Chứng minh E , O , N thẳng hàng
cho tam giác ABC là tam giác nhọn ( AB< AC). Gọi M và N lần lượt là trung điểm của AB và AC.
a) Chứng minh MN // BC
b) Biết BC = 12 cm. Tính MN
c) Chứng minh tứ giác BMNC là hình thang
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC
b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)
c, Vì MN//BC nên BMNC là hình thang
Câu 1 Cho tứ giác ABCD Gọi Q là trung điểm của AC đường thẳng qua Q cắt AB AC lần lượt tại I và K chứng minh diện tích tam giác AIK bằng diện tích tam giác CIK
Câu 2 Cho tam giác ABC cân tại A Gọi M và N lần lượt là trung điểm của AB và AC .a) chứng minh tứ giác BMNC là hình thang .b). Trên tia đối của tia MN xác định điểm E sao cho NE=NM hỏi tứ giác AECM là hình gì vì sao
Câu 3 Cho tam giác abc vuông tại a gọi D E theo thứ tự là trung điểm của AB BC Tính de biết BC = 10 cm AB = 8 cm
Câu 4 cho tứ giác ABCD có Â = 90° B =60° C =120°. a)tính số đo góc D. b) tứ giác ABCD là hình gì vì sao?
Giúp mình với sắp thi rùi
Cho tam giác ABC nhọn (AB<AC). Gọi M và N lần lượt là trung điểm của AB, AC.
a. Chứng minh tứ giác BMNC là hình thang
b. Qua M vẽ đường thẳng song song với AC cắt BC tại F. Chứng minh tứ giác MNCE là hình bình hành
c. Đường cao AH của tam giác ABC cắt MN tại điểm I. Gọi F là trung điểm của BH. Chứng minh: tứ giác AIFM là hình bình hành.
Cho tam giác ABC nhọn ( AB bé hơn AC) AH là đường cao. Gọi M, N lần lượt là trung điểm của AB và AC
a) CM: tứ giác BMNC là hình thang
b) CM: MN là đường trung trực của AH
c) Gọi I là trung điểm của BC. CM: tứ giác MNIH là hình thang cân
d) CM: AI < ( AC + AB): 2
có chứ sao ko hihi
có chứ bạn bài cũng dễ
Cho ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC.
a) Cho BC cm 6 . Tính độ đài MN.
b) Chứng minh tứ giác BMNC là hình thang cân.
c) Gọi H là trung điểm BC, Q là trung điểm BH , P là giao điểm của AH và MN. Chứng minh tứ giác QMPH là hình chữ nhật.
Cho ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC.
a) Cho BC cm 6 . Tính độ đài MN.
b) Chứng minh tứ giác BMNC là hình thang cân.
c) Gọi H là trung điểm BC, Q là trung điểm BH , P là giao điểm của AH và MN. Chứng minh tứ giác QMPH là hình chữ nhật.
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn
Cho tam giác ABC cân tại A (BC<AB). Gọi M,N lần lượt là trung điểm của AB và CD
a. Chứng minh: tứ giác MNCB là hình thang cân
b. Cho góc B=45. Tìm các góc còn lại của hình thang MNCB
c. Gọi P,Q lần lượt là trung điểm của MN,NC. Tính độ dài PQ biết BC=4cm
d. Trong tam giác ABC dựng đường cao CI. Gọi H là trung điểm của BC. Chứng minh: MNHI là hình thang cân
Chỉ cần làm hộ mình câu c và câu d thôi. CẢM ƠN