\(M=\frac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10\:\:}-\sqrt{2}}\)
Rút gọn
rút gọn \(M=\frac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
Lời giải:
\(M=\frac{2\sqrt{4-\sqrt{5+\sqrt{20+1+2\sqrt{20.1}}}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-\sqrt{5+\sqrt{(\sqrt{20}+1)^2}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{2\sqrt{4-\sqrt{5+\sqrt{20}+1}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-\sqrt{5+1+2\sqrt{5}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{2\sqrt{4-\sqrt{(\sqrt{5}+1)^2}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-(\sqrt{5}+1)}}{\sqrt{2}(\sqrt{5}-1)}=\frac{\sqrt{2}.\sqrt{3-\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{5+1-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{(\sqrt{5}-1)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
Lời giải:
\(M=\frac{2\sqrt{4-\sqrt{5+\sqrt{20+1+2\sqrt{20.1}}}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-\sqrt{5+\sqrt{(\sqrt{20}+1)^2}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{2\sqrt{4-\sqrt{5+\sqrt{20}+1}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-\sqrt{5+1+2\sqrt{5}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{2\sqrt{4-\sqrt{(\sqrt{5}+1)^2}}}{\sqrt{10}-\sqrt{2}}=\frac{2\sqrt{4-(\sqrt{5}+1)}}{\sqrt{2}(\sqrt{5}-1)}=\frac{\sqrt{2}.\sqrt{3-\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{5+1-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{(\sqrt{5}-1)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
Rút gọn M=\(\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
rút gọn:\(A=\dfrac{4\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
\(A=\dfrac{4\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}=\dfrac{4\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\\ =\dfrac{4\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}=\dfrac{4\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\\ =\dfrac{2\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\left(\sqrt{10}-\sqrt{2}\right)}{\sqrt{10}-\sqrt{2}}\\ =2\)
Giúp mình với !
1. Rút gọn
a)\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\frac{\sqrt{450}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)
b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)
c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
Rút gọn:
\(A=\dfrac{2.\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
\(A=\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\sqrt{4-\sqrt{5+\sqrt{20+4\sqrt{5}+1}}}}{\sqrt{10}-\sqrt{2}}\)\(=\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(2\sqrt{5}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\sqrt{4-\sqrt{5+\left(2\sqrt{5}+1\right)}}}{\sqrt{10}-\sqrt{2}}=\)\(=\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\sqrt{4-\sqrt{5}-1}}{\sqrt{10}-\sqrt{2}}=\dfrac{\sqrt{2}.\sqrt{6-2\sqrt{5}}}{\sqrt{10}-\sqrt{2}}=\dfrac{\sqrt{2}.\sqrt{5-2\sqrt{5}+1}}{\sqrt{10}-\sqrt{2}}=\dfrac{\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{10}-\sqrt{2}}=\dfrac{\sqrt{2}.\left(\sqrt{5}-1\right)}{\sqrt{10}-\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{2}}{\sqrt{10}-\sqrt{2}}=1\)
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
Rút gọn biểu thức
1)\(\sqrt{6+\sqrt{32}}\) - \(\sqrt{11-\sqrt{72}}\)
2) \(\sqrt{21-4\sqrt{5}}\) + \(\sqrt{21+4\sqrt{5}}\)
1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=2+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}-1\)
2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)
\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)
\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)