Chứng minh đa thức sau x^4+x^3+x+1/ x^4-x^3+2x^2-x+1 = (x+1)^2 /x^2+1
1 . Cho f ( x ) = 4x³ - 2x² + x - 5 g ( x ) = x³ + 4 x² - 3x + 2 h ( x ) = -3 x ³ + x² + x - 2 Tính : a ) f ( x ) + g ( x ) b ) g ( x ) - h ( x ) 2 . Tìm nghiệm đa thức : a , 7 - 2x b , ( x + 1 ) ( x - 2 ) ( 2x - 1 ) c , 2x + 5 d , 3x ² + x 3 . Chứng minh rằng các đa thức sau không có nghiệm : a , f ( x ) = x ² + 1 b , ( 2x + 1 ) ² + 3
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
mù mắt xD ghi rõ đề đi bạn ơi !
Dịch:
Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)
Tính a) \(f\left(x\right)+g\left(x\right)\)
b) \(g\left(x\right)-h\left(x\right)\)
2. Tìm nghiệm của đa thức
a) \(7-2x\)
b) (x+1)(x-2)(2x-1)
c) 2x+5
d) 3x2+x
3. CMR các đa thức sau không có nghiệm
\(a,f\left(x\right)=x^2+1\)
\(b,\left(2x+1\right)^2+3\)
Chứng minh rằng đa thức Q(x)=x.(x^2/2-1/2 x^3+1/2x)-(x^3/3-1/2x^4+x^2-x/3) đạt giá trị nguyên
Bài 1: Rút gọn biểu thức sau:
a. 3x2(2x3- x+5) - 6x5-3x3+10x2
b. -2x(x3-3x2-xx+11)-2x4+3x3+2x2-22x2x
Bài 2: Chứng minh biểu thức sau không phụ thuộc vào x:
a. x(2x+1)-x2(x+2)+(x2-x+3)
b. 4(x-6)-x2(2+3x)+x(5x-4)+3x2(x-1)
Bài 3: Cho đa thức: f(x)=3x2-x+1
g(x)=x-1
a. Tính f(x).g(x)
b. Tìm x để f(x).g(x)+x2[1-3g(x)]=
Bài 4: Tìm x:
a. \(\dfrac{1}{4}\)x2-(\(\dfrac{1}{2}\)x-4)\(\dfrac{1}{2}\)x=-14
b. 2x(x-4)+3(x-4)+x(x-2)-5(x-2)=3x
(x-4)-5(x-4)
Các bạn giúp mik giải bt nha. Cảm ơn mn nhiêu ạ.
`@` `\text {Ans}`
`\downarrow`
Gửi c!
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
4:
a: =>1/4x^2-1/4x^2+2x=-14
=>2x=-14
=>x=-7
b: =>2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20
=>3x^2-12x-2=3x^2-17x+20
=>5x=22
=>x=22/5
Cho đa thức P(x)=x.(x^2/2-1/2x^3+1/2x)-(-1/2x^4+x^2).Chứng minh rằng: P(x) nhận giá trị nguyên với mọi số x nguyên.
\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)
Vì x(x-1) chia hết cho 2 với mọi số nguyên x
nên P(x) luôn là số nguyên nếu x nguyên
1. Chứng minh đa thức f(x)=(x^2+x-1)^10+(x^2-x+1)^10-2 chia hết cho x^2-2
2. Chứng minh đa thức f(x)=x^12-x^9+x^4-x+1 không có nghiệm
3. Tìm a để đa thức f(x)=2x^2+7x+6 chia hết cho đa thức g(x)=x+a
4. Với giá trị nào của m thì đa thức f(x)=x^3+x^2-2x+1+m chia hết cho g(x)=2x+1
5. Tìm a,b,c sao cho f(x)=ax^3+b^2+c chia hết cho đa thức x+1 và f(x)=x^-1 thì dư x+5
Help me pleaseeeeeeeeeeeeeeeee
Chiều mai mình nộp rồi, bạn nào giúp được câu nào thì giúp giúp mình với, làm ơnnnnnnnn
chứng minh rằng các đa thức sau là vô nghiệm :
P(x)= 2x^2+1
Q(x)= x^4+2x^2+1
M(x)=x^2+2x+3
N(x)= x^2-4x+5
P(x) = \(2x^2+1\)
Ta có \(2x^2\ge0\forall x\)
=> \(2x^2+1\ge1>0\)
Vậy đa thức P(x) vô nghiệm
Q(x) = \(x^4+2x^2+1\)
Ta có \(x^4+2x^2\ge0\forall x\)
=> \(x^4+2x^2+1\ge1>0\)
Vậy đa thức Q(x) vô nghiệm
M(x)= \(x^2+2x+3\) = \(x^2+x+x+1+2\)
= \(x\left(x+1\right)+\left(x+1\right)+2\)
= \(\left(x+1\right)^2+2\)
Ta có \(\left(x+1\right)^2\ge0\forall x\)
=> \(\left(x+1\right)^2+2\)\(\ge2>0\)
Vậy đa thức M(x) vô nghiệm
P(x)=2x2+1
Do 2x2\(\ge0\Rightarrow P\left(x\right)=2x^2+1\ge0+1=1>0\)
Vậy đa thức P(x)=2x2+1 không có nghiệm
Q(x)=x4+2x2+1=\(\left(x^2\right)^2+2x^2+1\)
Do \(\left(x^2\right)^2\ge0\) và 2x2\(\ge0\)\(\Rightarrow Q\left(x\right)=x^4+2x^2+1=\left(x^2\right)^2+2x^2+1\)\(\ge0+0+1=1>0\)
Vậy đa thức Q(x)=x4+2x2+1 không có nghiệm
M(x)=x2+2x+3=x2+x+x+1+2=x(x+1)+(x+1)+2=(x+1)(x+1)+2=(x+1)2+2
Do (x+1)2\(\ge0\)\(\Rightarrow M\left(x\right)=x^2+2x+3=\left(x+1\right)^2+2\)\(\ge0+2=2>0\)
Vậy đa thức M(x)=x2+2x+3 không có nghiệm
N(x)=x2-4x+5=x2-2x-2x+4+1=x(x-2)-2(x-2)+1=(x-2)(x-2)+1=(x-2)2+1
Do (x-2)2\(\ge0\) \(\Rightarrow\)N(x)=x2-4x+5=(x-2)2+1\(\ge0+1=1>0\)
Vậy đa thức N(x)=x2-4x+5 không có nghiệm
Bài 1 : Rút Gọn Đa thức sau
3(2x+5)2-3(4x+1).(1-4x)
Bài 2 : Chia Đa thức Sau cho đơn Thức
( x4-2x3+4x2-8x):(x2+4)
Bài 3 : Chứng minh rằng biểu thức x2-xy+y2 không có giá trị âm vs mọi giá trị của x và y
Bài 4 : Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
Chứng minh đa thức sau vô nghiệm biết :
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)
\(f\left(x\right)=x^4+2x^2+1\)
Cho \(f\left(x\right)=0\)
\(\Rightarrow f\left(x\right)=x^4+2x^2+1=0\)
Ta có:
\(x^4\ge0\)
\(2x^2\ge0\)
Do đó:
\(x^4+2x^2+1\ge0+1\)
\(x^4+2x^2+1\ge1\)
=> Vậy đa thức \(x^4+2x^2+1\) = \(5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) vô nghiệm.
chứng minh các đa thức sau
a) \(\dfrac{a^3-4a^3-a+4}{a^3-7a^2+14a-8}\)= \(\dfrac{a+1}{a-2}\)
b)\(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Lời giải:
ĐK....................
a)
\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)
\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)
b)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)
\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)
Lời giải:
ĐK....................
a)
\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)
\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)
b)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)
\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)