Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không Biết

chứng minh rằng các đa thức sau là vô nghiệm :

P(x)= 2x^2+1

Q(x)= x^4+2x^2+1

M(x)=x^2+2x+3

N(x)= x^2-4x+5

Nguyễn Lê Hồng Thái
7 tháng 5 2017 lúc 16:29

P(x) = \(2x^2+1\)

Ta có \(2x^2\ge0\forall x\)

=> \(2x^2+1\ge1>0\)

Vậy đa thức P(x) vô nghiệm

Q(x) = \(x^4+2x^2+1\)

Ta có \(x^4+2x^2\ge0\forall x\)

=> \(x^4+2x^2+1\ge1>0\)

Vậy đa thức Q(x) vô nghiệm

M(x)= \(x^2+2x+3\) = \(x^2+x+x+1+2\)

= \(x\left(x+1\right)+\left(x+1\right)+2\)

= \(\left(x+1\right)^2+2\)

Ta có \(\left(x+1\right)^2\ge0\forall x\)

=> \(\left(x+1\right)^2+2\)\(\ge2>0\)

Vậy đa thức M(x) vô nghiệm

Cô Nàng Song Tử
7 tháng 5 2017 lúc 16:36

P(x)=2x2+1

Do 2x2\(\ge0\Rightarrow P\left(x\right)=2x^2+1\ge0+1=1>0\)

Vậy đa thức P(x)=2x2+1 không có nghiệm

Q(x)=x4+2x2+1=\(\left(x^2\right)^2+2x^2+1\)

Do \(\left(x^2\right)^2\ge0\) và 2x2\(\ge0\)\(\Rightarrow Q\left(x\right)=x^4+2x^2+1=\left(x^2\right)^2+2x^2+1\)\(\ge0+0+1=1>0\)

Vậy đa thức Q(x)=x4+2x2+1 không có nghiệm

M(x)=x2+2x+3=x2+x+x+1+2=x(x+1)+(x+1)+2=(x+1)(x+1)+2=(x+1)2+2

Do (x+1)2\(\ge0\)\(\Rightarrow M\left(x\right)=x^2+2x+3=\left(x+1\right)^2+2\)\(\ge0+2=2>0\)

Vậy đa thức M(x)=x2+2x+3 không có nghiệm

N(x)=x2-4x+5=x2-2x-2x+4+1=x(x-2)-2(x-2)+1=(x-2)(x-2)+1=(x-2)2+1

Do (x-2)2\(\ge0\) \(\Rightarrow\)N(x)=x2-4x+5=(x-2)2+1\(\ge0+1=1>0\)

Vậy đa thức N(x)=x2-4x+5 không có nghiệm


Các câu hỏi tương tự
nguyễn lê thùy linh
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Phạm Bảo Ngọc
Xem chi tiết
Linh Sun
Xem chi tiết
Tường Vy
Xem chi tiết
Akabane Karma
Xem chi tiết
Trần Kim Chi
Xem chi tiết
Không Biết
Xem chi tiết
Xíu Đen Black
Xem chi tiết