Cho tam giác đều có cạnh AB=5, H là trung điểm của BC. Tính |vecto CA - vecto HC|
1, Cho tam giác ABC có G là trọng tâm, biết rằng vecto AG= x vecto AB + y vecto AC (x;y ∈ R). tính T=x+y.
2, cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính |vecto CA - vecto HC|.
3, Cho tập hợp A= x ∈ R; x=3k, k ∈ Z, 10<x<100. Tổng các phần tử của tập hợp A bằng bao nhiêu?
1.
Gọi M là trung điểm BC thì theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\Rightarrow x+y=\dfrac{2}{3}\)
2.
\(CH=\dfrac{1}{2}BC=\dfrac{a}{2}\)
\(T=\left|\text{ }\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)
\(\Rightarrow T^2=CA^2+CH^2+2\overrightarrow{CA}.\overrightarrow{CH}=a^2+\left(\dfrac{a}{2}\right)^2+2.a.\dfrac{a}{2}.cos60^0=\dfrac{7a^2}{4}\)
\(\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)
3.
\(10< x< 100\Rightarrow10< 3k< 100\)
\(\Rightarrow\dfrac{10}{3}< k< \dfrac{100}{3}\Rightarrow4\le k\le33\)
\(\Rightarrow\sum x=3\left(4+5+...+33\right)=1665\)
Cho tam giác ABC có M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tính
a. Vecto AB+ CA+ BC
b. Vecto AM+ AP
c. Vecto AM+ BN+ CP
giúp em với ạ:(
a: \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}\)
\(=\overrightarrow{0}\)
b: \(\overrightarrow{AM}+\overrightarrow{AP}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{2}\cdot2\cdot\overrightarrow{AN}=\overrightarrow{AN}\)
Cho tam giác ABC có A',B', C' lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh vecto BC' = vecto C'A = vecto A'B".
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
a) ta có vector AA'+vectorBB'+vectorCC'=1/2(vectorAB+vectorAC+vectorBA+vectorBC+vectorCA+vectorCB)=vector 0
t/c trung tuyến
Cho tam giác đều abc có cạnh ab=4cm, gọi M là trung điểm cạnh bc .tính độ dài vecto bm-ba.
\(=\dfrac{4\sqrt{3}}{2}=2\sqrt{3}\)
cho tam giác ABC bất kì , gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA . H,H' lần lượt là trực tâm của tam giác ABC,MNP. .Khẳng định nào sau đây đúng?
A) vecto HA + vecto HB + vecto HC = 3vecto HH'
B) vecto HA + vecto HB + vecto HC = 2vecto HH'
C) vecto HA + vecto HB + vecto HC = vecto 0
D) vecto HM + vecto HN + vecto HP = 3vecto HH'
Lời giải:
Có thể loại ngay đáp án C vì nếu $H\equiv G$( $G$ là trọng tâm $ABC$) thì ta mới có công thức trên.
$\overrightarrow{HM}+\overrightarrow{HN}+\overrightarrow{HP}=\frac{1}{2}(2\overrightarrow{HM}+2\overrightarrow{HN}+2\overrightarrow{HP})$
$=\frac{1}{2}(\overrightarrow{HA}+\overrightarrow{AM}+\overrightarrow{HB}+\overrightarrow{BM})+\overrightarrow{HB}+\overrightarrow{BN}+\overrightarrow{HC}+\overrightarrow{CN}+\overrightarrow{HC}+\overrightarrow{CP}+\overrightarrow{HA}+\overrightarrow{AP})$
$=\frac{1}{2}(2\overrightarrow{HA}+2\overrightarrow{HB}+2\overrightarrow{HC})=\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}$ nên 2 phương án A, D tương đương nhau.
Do đó có thể suy ra đáp án B là đáp án đúng.
Nếu bạn muốn chứng minh hẳn tại sao đáp án B đúng thì có thể làm như sau:
Dễ thấy $\triangle ABC\sim \triangle NPM$ theo tỷ lệ $2$
Mà $H, H'$ lần lượt là trực tâm 2 tam giác trên
$\Rightarrow \frac{CH}{MH'}=2$
$\Leftrightarrow CH=2MH'(1)$
Mặt khác: $CH\perp AB; MH'\perp PN; AB\parallel PN$ nên $MH'\parallel CH(2)$
Từ $(1); (2)\Rightarrow 2\overrightarrow{H'M}=\overrightarrow{CH}$
Từ đây ta có:
$\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}+\overrightarrow{H'A}+\overrightarrow{HH'}+\overrightarrow{H'B}+\overrightarrow{HC}$
$=2\overrightarrow{HH'}+(\overrightarrow{H'A}+\overrightarrow{H'B})+\overrightarrow{HC}$
$=2\overrightarrow{HH'}+(\overrightarrow{H'A}+\overrightarrow{AM}+\overrightarrow{H'B}+\overrightarrow{BM})+\overrightarrow{HC}$
$=2\overrightarrow{HH'}+(\overrightarrow{H'M}+\overrightarrow{H'M})+\overrightarrow{HC}$
$=2\overrightarrow{HH'}+2\overrightarrow{H'M}+\overrightarrow{HC}$
$=2\overrightarrow{HH'}+\overrightarrow{CH}+\overrightarrow{HC}$
$=2\overrightarrow{HH'}$
Vậy đáp án B đúng.
Lời giải:
\(\overrightarrow{AC}.\overrightarrow{BI}=(\overrightarrow{AM}+\overrightarrow{MC})(\overrightarrow{BM}+\overrightarrow{MI})\)
\(=\overrightarrow{AM}.\overrightarrow{BM}+\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}+\overrightarrow{MC}.\overrightarrow{MI}\)
\(=\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}\)
\(=\overrightarrow{AM}.\frac{-\overrightarrow{AM}}{2}+\frac{\overrightarrow{BC}}{2}.\overrightarrow{BC}=\frac{BC^2-AM^2}{2}\)
\(=\frac{BC^2-(\frac{\sqrt{3}}{2}BC)^2}{2}=\frac{BC^2}{8}=\frac{9a^2}{8}\)
Cho tam giác ABC đều cạnh bằng a, M là trung điểm của BC tính độ dài vecto AM
\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)
CHo tam giác ABC đều có cạnh là 6. Gọi M, N, P lần lượt là ttrung điểm của AB, AC, BC.
â. kể tên các vectơ bằng vectơ MN
b. tính độ dài vecto MNnhaan độ dài vecto AP
c. hạ PH vuông góc với AC tại H. tính độ dài vecto PH