\(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a,\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}=\dfrac{8}{1-\sqrt{5}}\)
b,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
Giúp vs, làm câu nào cx đc, làm hết thì tốt
a) \(\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
b) \(\sqrt{27-10\sqrt{2}}+\sqrt{18-8\sqrt{2}}\)
c) \(\sqrt{3-\sqrt{5}}.\sqrt{8}\)
d) \(\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{2}}.\sqrt{8}\)
e) \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
g) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-\left(\sqrt{2}+3\right)\)
h) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
i) \(\left(\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}\right).\left(\sqrt[3]{5}+\sqrt[3]{2}\right)\)
k) \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
L) \(A=\sqrt[3]{10+14\sqrt{2}}+\sqrt[3]{10-14\sqrt{2}}\)
k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}-1\)
Tính:
A = \(\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
B = \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a) \(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(A=\sqrt{16+8\sqrt{3}+3}-\sqrt{3+2\sqrt{3}+1}\)
\(A=\sqrt{\left(4+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=4+\sqrt{3}-\sqrt{3}-1=3\)
b) \(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(B=\sqrt{25+10\sqrt{2}+2}-\sqrt{16+8\sqrt{2}+2}\)
\(A=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)
\(A=5+\sqrt{2}-4-\sqrt{2}=1\)
\(A=\sqrt{19+8\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+8\sqrt{3}+16}-\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot4+4^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}+1^2}\)
\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}+4-\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}+4-\sqrt{3}-1=3\)
\(B=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=\sqrt{2+10\sqrt{2}+25}-\sqrt{2+8\sqrt{2}+16}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot5+5^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot4+4^2}\)
\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)
\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|\)
\(=\sqrt{2}+5-\left(\sqrt{2}+4\right)\)
\(=\sqrt{2}+5-\sqrt{2}-4=1\)
rút gọn biểu thức
E=2\(\sqrt{3}\)+3\(\sqrt{27}\)-\(\sqrt{300}\)
F=3\(\sqrt{2}\)+4\(\sqrt{18}\)
G=2\(\sqrt{3}\)-4\(\sqrt{27}\)+5\(\sqrt{48}\)
H=(3\(\sqrt{50}\)-5\(\sqrt{18}\)+3\(\sqrt{8}\))\(\sqrt{2}\)
\(E=2\sqrt{3}+3\sqrt{3^3}-\sqrt{100.3}\\ =2\sqrt{3}+9\sqrt{3}-10\sqrt{3}\\ =\left(2+9-10\right)\sqrt{3}=\sqrt{3}\)
\(F=\sqrt{3^2.2}+4\sqrt{18}=\sqrt{18}+4\sqrt{18}=\left(1+4\right)\sqrt{18}=5\sqrt{18}\)
\(G=2\sqrt{3}-4\sqrt{3^3}+5\sqrt{4^2.3}=2\sqrt{3}-12\sqrt{3}+20\sqrt{3}=\left(2-12+20\right)\sqrt{3}=10\sqrt{3}\)
\(H=\left(3\sqrt{25.2}-5\sqrt{9.2}+3\sqrt{2^3}\right)\sqrt{2}\\ =\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\sqrt{2}\\ =6\sqrt{2}.\sqrt{2}=6\)
Tính:
a) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)
Tính:
a) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
b) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Mọi người giúp em với!!!!!!!!!!!!
\(a.\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=2\sqrt{5}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}-2}{1-\sqrt{5}}=\dfrac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\) \(b.\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6.5}+\sqrt{27.6}}=\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{17}\right)}=-\dfrac{\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-2-1}{\sqrt{6}}=-\dfrac{\sqrt{3}}{\sqrt{2}}\)
Rút gọn\(B=\frac{3\sqrt{8}+2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\\ C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Cho \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a, Rút gọn P
b, Tính P khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)
Thực hiện phép tính:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d)\(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự