Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
Chứng minh các đẳng thức lượng giác sau:
a) \({\sin ^4}\alpha - {\cos ^4}\alpha = 1 - 2{\cos ^2}\alpha \)
b) \(\tan \alpha + \cot \alpha = \frac{1}{{\sin \alpha .\cos \alpha }}\)
a) Ta có:
\(\begin{array}{l}{\sin ^4}\alpha - {\cos ^4}\alpha = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha - {\cos ^2}\alpha - 1 + 2{\cos ^2}\alpha = 0\\ \Leftrightarrow {\sin ^2}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)
Đẳng thức luôn đúng
b) Ta có:
\(\begin{array}{l}\tan \alpha + \cot \alpha = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)
Đẳng thức luôn đúng
Chứng minh rằng: \(\frac{\sin\alpha}{1+\cot\alpha}+\frac{\cos\alpha}{1+\tan\alpha}=\frac{1}{\sin\alpha+\cos\alpha}\)
vế trái =\(\frac{\sin}{1+\cot}\)+\(\frac{\cos}{1+\tan}\)= \(\frac{sin}{1+\frac{cos}{sin}}\)+\(\frac{cos}{1+\frac{sin}{cos}}\)= \(\frac{sin^2}{\sin+cos}\)+\(\frac{cos^2}{sin+cos}\)= \(\frac{sin^2+cos^2}{sin+cos}\)=\(\frac{1}{sin+cos}\)= vế phải
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
https://vietjack.com/giai-toan-lop-9/bai-14-trang-77-sgk-toan-9-tap-1.jsp
bạn tham khảo ở đây nhé
giả sử: ta có, ABC vuông tại A, góc an-pha là góc B
\(sin\alpha=sinB=\frac{CA}{CB}\)
\(cos\alpha=cosB=\frac{AB}{BC}\)
\(tan\alpha=tanB=\frac{CA}{AB}\)
\(cot\alpha=cotB=\frac{AB}{CA}\)
do đó,
a) \(\frac{sin\alpha}{cos\alpha}=\frac{sinB}{cosB}=\frac{\frac{CA}{BC}}{\frac{AB}{BC}}=\frac{CA}{BC}.\frac{BC}{AB}=\frac{CA}{AB}=tan\alpha\)
b) câu b thì cậu giải tương tự như câu a vậy
a) Biết sinα= \(\frac{1}{2}\). Tính cosα, tanα, cotα.
b) Biết cosα= \(\frac{2}{5}\). Tính sinα, tanα, cotα.
c) Biết tanα= 3. Tính cosα, sinα, cotα.
d) Biết cotα=\(\sqrt{3}\). Tính cosα, tanα, sinα.
e) Biết sinα= \(\frac{1}{\sqrt{3}}\). Tính cosα, tanα, cotα.
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)
\(=tan^2a+1=\frac{1}{cos^2a}\)
\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)
\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)
\(=1-sin^2a+sin^2a=1\)
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)
Chứng minh các hệ thức sau:
a) 1 + tan2 α = \(\frac{1}{cos^2\alpha}\)
b) 1 + cot2 α = \(\frac{1}{sin^2\alpha}\)
c) cot2 α - cos2 α= cot2 α . cos2 α
d) \(\frac{1+cos^2\alpha}{sin\alpha}\)=\(\frac{Sin\alpha}{1-cos\alpha}\)
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
Chứng minh các hệ thức sau:
a) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
b) \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha \ne {90^o})\)
c) \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\quad ({0^o} < \alpha < {180^o})\)
Tham khảo:
a)
Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha \). Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.
Ta có: \(\left\{ \begin{array}{l}x = \cos \alpha \\y = \sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}\alpha = {x^2}\\{\sin ^2}\alpha = {y^2}\end{array} \right.\)(1)
Mà \(\left\{ \begin{array}{l}\left| x \right| = ON\\\left| y \right| = OP = MN\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} = {\left| x \right|^2} = O{N^2}\\{y^2} = {\left| y \right|^2} = M{N^2}\end{array} \right.\)(2)
Từ (1) và (2) suy ra \({\sin ^2}\alpha + {\cos ^2}\alpha = O{N^2} + M{N^2} = O{M^2}\) (do \(\Delta OMN\) vuông tại N)
\( \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1\) (vì OM =1). (đpcm)
b)
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\;\;(\alpha \ne {90^o})\)
\( \Rightarrow 1 + {\tan ^2}\alpha = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}\)
Mà theo ý a) ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) với mọi góc \(\alpha \)
\( \Rightarrow 1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) (đpcm)
c)
Ta có: \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\;\;\;({0^o} < \alpha < {180^o})\)
\( \Rightarrow 1 + {\cot ^2}\alpha = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\)
Mà theo ý a) ta có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) với mọi góc \(\alpha \)
\( \Rightarrow 1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\) (đpcm)