Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ending of Story
Xem chi tiết
Lê Tài Bảo Châu
29 tháng 7 2021 lúc 0:08

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

Khách vãng lai đã xóa
Bống
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:42

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Akai Haruma
8 tháng 10 2021 lúc 8:13

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

Akai Haruma
8 tháng 10 2021 lúc 8:16

c. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$

$\Leftrightarrow 2\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}=2$

$\Leftrightarrow x-1=4$

$\Leftrightarrow x=5$ (tm)

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$

$\Leftrightarrow \sqrt{x-2}=6$

$\Leftrightarrow x-2=36$

$\Leftrightarrow x=38$ (tm)

 

PTTD
Xem chi tiết
hưng phúc
17 tháng 9 2021 lúc 20:44

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 21:54

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

Đỗ Thị Linh
Xem chi tiết
Nguyễn Linh Chi
25 tháng 5 2020 lúc 23:45

ĐK: \(x+y\ne0;x\ge2\)

\(\hept{\begin{cases}\frac{4}{x+y}+3\sqrt{4x-8}=14\\\frac{5-x-y}{x+y}-2\sqrt{x-2}=\frac{-5}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

Đặt: \(\frac{1}{x+y}=u\ne0;\sqrt{x-2}=v\ge0\)

ta có hệ: \(\hept{\begin{cases}4u+6v=14\\5u-2v=\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=2\end{cases}}\)thỏa mãn

khi đó ta có: \(\hept{\begin{cases}\frac{1}{x+y}=\frac{1}{2}\\\sqrt{x-2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=6\end{cases}}\)thỏa mãn

Vậy:...

Khách vãng lai đã xóa
Phạm Băng Băng
Xem chi tiết
Nyatmax
9 tháng 10 2019 lúc 16:22

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)

Nghĩa “Tôi yêu thiên nhi...
Xem chi tiết
Nguyễn Thái Bình
9 tháng 6 2016 lúc 20:24

phương trình đầu tương đương với:

\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)

\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)

\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm

      \(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

       \(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)

        bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé

TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có 

        \(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)

        Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn

Nghĩa “Tôi yêu thiên nhi...
9 tháng 6 2016 lúc 21:07

cam on ban rat nhieu

Linh Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

gh
Xem chi tiết
Nguyễn Minh Đăng
21 tháng 10 2020 lúc 21:42

a) đk: \(x\ge-2\)

Ta có: \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\frac{5}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\sqrt{x+2}=\frac{12}{5}\)

\(\Leftrightarrow x+2=\frac{144}{25}\)

\(\Rightarrow x=\frac{94}{25}\) (tm)

b) đk: \(x\ge\frac{3}{2}\)

Ta có: \(\sqrt{x^2-4x+4}=2x-3\)

\(\Leftrightarrow\left|x-2\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-3\\x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{5}{3}\left(tm\right)\end{cases}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 10 2020 lúc 21:46

a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

ĐKXĐ : x ≥ -2

⇔ \(\sqrt{x+2}-\sqrt{2^2\left(x+2\right)}+\frac{3}{4}\sqrt{3^2\left(x+2\right)}=3\)

⇔ \(\sqrt{x+2}-2\sqrt{x+2}+\frac{3}{4}\cdot3\sqrt{x+2}=3\)

⇔ \(-\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

⇔ \(\frac{5}{4}\sqrt{x+2}=3\)

⇔ \(\sqrt{x+2}=\frac{12}{5}\)

⇔ \(x+2=\frac{144}{25}\)

⇔ \(x=\frac{94}{25}\left(tmđk\right)\)

b) \(\sqrt{x^2-4x+4}=2x-3\)

⇔ \(\sqrt{\left(x-2\right)^2}=2x-3\)

⇔ \(\left|x-2\right|=2x-3\)(1)

Với x < 2

(1) ⇔ -( x - 2 ) = 2x - 3

     ⇔ 2 - x = 2x - 3

     ⇔ -x - 2x = -3 - 2

     ⇔ -3x = -5

     ⇔ x = 5/3 ( tm )

Với x ≥ 2

(1) ⇔ x - 2 = 2x - 3

     ⇔ x - 2x = -3 + 2

     ⇔ -x = -1

     ⇔ x = 1 ( ktm )

Vậy x = 5/3

Khách vãng lai đã xóa
Nguyễn Trung Hiếu
Xem chi tiết
alibaba nguyễn
13 tháng 11 2016 lúc 15:08

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

Bùi Minh Quân
Xem chi tiết
Phùng Minh Quân
1 tháng 9 2017 lúc 11:37

Bạn gần như trùng tên với mình đấy.Ket ban voi minh nha.

Nguyễn Văn Tuấn Anh
1 tháng 9 2019 lúc 21:10

\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)

\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)

\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\) 

\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)

\(\Rightarrow x^4=x^3+x\sqrt{3}\)

\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)

Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 5:27

b) ĐK: \(x\ge-1\)

Áp dụng BĐT Cô-si cho 4 số: 4,4,4,x+1 ta được:

\(4+4+4+\left(x+1\right)\ge4\sqrt[4]{4.4.4\left(x+1\right)}=8\sqrt[4]{4x+4}\)

\(\Leftrightarrow13+x\ge8\sqrt[4]{4x+4}\)

Từ pt ta có được: \(13+x\ge x^3-3x^2-8x+40\Leftrightarrow\left(x-3\right)^2\left(x+3\right)\le0\)

Do \(x+1\ge0\Rightarrow x+3>0\)nên \(\left(x-3\right)^2\le0\Leftrightarrow x=3\)

Vậy với x=3 thoả mãn pt

Vậy x=3 là nghiệm của pt.

Khách vãng lai đã xóa