Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Trang Trần
Xem chi tiết
Ngô Anh Minh
9 tháng 1 lúc 20:55

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

Minh Trang Trần
9 tháng 1 lúc 20:59

các bạn giúp mình với mình đang vội.

 

Nguyễn Tú Hà
Xem chi tiết
Dang Tung
22 tháng 6 2023 lúc 9:59

Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)

Do đó đề bài xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)

Nguyễn Tú Hà
22 tháng 6 2023 lúc 10:35

Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?

Alex Dương
Xem chi tiết
Kiều Vũ Linh
21 tháng 12 2023 lúc 6:54

Em xem lại số mũ của 2x - 5y nhé

2023 hay 2024?

Xuân An Hồ
Xem chi tiết
Akai Haruma
29 tháng 10 2023 lúc 16:58

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.

Hiếu Minh
Xem chi tiết
Phương Anh
Xem chi tiết
Akai Haruma
6 tháng 11 2023 lúc 18:41

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$

Nguyễn Hữu Kiều Trinh
Xem chi tiết
Võ Gia Hưng
Xem chi tiết
Minh Trang Trần
Xem chi tiết

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5