Cho tam giác nhọn ABC, đường cao AH. Lấy M, N, P lần lượt là trung điểm của BC, AB, AC. Chứng minh MHNP là hình thang cân.
Gợi ý: dựa vào đường trung bình của tam giác và hai đường thẳng song song.
Giúp mình nha !
Ai đúng và dễ hiểu mk tick cho
Cho tam giác ABC nhọn (AB<AC). Gọi M và N lần lượt là trung điểm của AB, AC.
a. Chứng minh tứ giác BMNC là hình thang
b. Qua M vẽ đường thẳng song song với AC cắt BC tại F. Chứng minh tứ giác MNCE là hình bình hành
c. Đường cao AH của tam giác ABC cắt MN tại điểm I. Gọi F là trung điểm của BH. Chứng minh: tứ giác AIFM là hình bình hành.
Cho tam giác ABC (AB>AC) đường cao AH. Gọi M,N,P lần lượt là trung điểm của BC,CA,AB. CMR:
a. NP là đường trung trực của AH
b. MHNP là hình thang cân
mng giải cho mình với nhé ( kèm hình )
a: Ta có: ΔAHB vuông tại H
mà HP là đường trung tuyến
nên HP=AP
hay P nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN
hay N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra PN là đường trung trực của AH
Cho tam giác ABC nhọn . Gọi M,N,P lần lượt là trung điểm của AB,AC,BC . Kẻ đường cao AH . Chứng minh rằng tứ giác MNPH là hình thang cân
Lời giải:
$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$
$\Rightarrow MNPH$ là hình thang $(*)$
Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)
$\Rightarrow $MHB$ cân tại $M$
$\Rightarrow \widehat{MHB}=\widehat{MBH}$
Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)
$\Rightarrow \widehat{MHB}=\widehat{NPC}$
$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$
Hay $\widehat{MHP}=\widehat{NPH}(**)$
Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)
Cho tam giác \(ABC\) nhọn. Gọi \(M,N,P\) lần lượt là trung điểm của \(AB;AC;BC\). Kẻ đường cao \(AH\). Chứng minh rằng tứ giác \(MNPH\) là hình thang cân.
- Vì \(M\) là trung điểm của \(AB;N\) là trung điểm của \(AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\). Do đó, \(MN//BC\) (tính chất đường trung bình).
\( \Rightarrow MN//HP\left( {H;P \in BC} \right)\)
Xét tứ giác \(MNPH\) có: \(MN//HP \Rightarrow \) tứ giác \(MNPH\) là hình thang.
- Vì \(M\) là trung điểm của \(AB;P\) là trung điểm của \(AC\) nên \(MP\) là đường trung bình của tam giác \(ABC\). Do đó, \(MP = \frac{1}{2}AC\) (tính chất đường trung bình) (1).
- Xét tam giác \(AHC\) vuông tại \(H\) có:
\(N\)là trung điểm của \(AC\) nên \(HN = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông) (2).
Từ (1) và (2) suy ra \(MP = HN\).
Xét hình thang \(MNPH\) có: \(MP = HN\) (chứng minh trên).
Do đó, hình thang \(MNPH\) là hình thang cân (dấu hiệu nhận biết hình thang cân).
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó:I là trung điểm của AH
Cho tam giác nhọn ABC, đường cao AH. Gọi M, N lần lượt là trung điểm AB và AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tại D
a) Chứng minh tứ giác BDNC là hình bình hành
b) Tứ giác BDNH là hình gì? Vì sao?
c) Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh DE=2EK
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
Xét tứ giác BDNC có
DN//BC
BD//NC
Do đó: BDNC là hình bình hành
b: Xét tứ giác BDNH có BH//DN
nên BDNH là hình thang
câu c mik có cm tương tự trong trang mình á vô coi cho nhanh==''
Cho tam giác ABC có ba góc nhọn (AB < AC) , đường cao AH Gọi M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, MN, cắt AH tại I
a) Chứng minh I là trung điểm của AH
b) Lấy điểm Q đối xứng với P qua N Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN
d) Gọi K là trung điểm của MN, O là giao điểm của CK và PQ , F là giao điểm của MN và QC Chứng minh B,O,F thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
cutsgrrrrrrrrrrrcccc5gcbvj4545651253
Cho tam giác ABC nhọn ( AB < AC), đường cao AH. Gọi I,K,M,N lần lượt là trung điểm của AB,AC,HC,HB.
1) chứng minh: IK là đường trung bình của tam giác ABC và tứ giác IKCB là hình thang .
2) Chứng minh: IN =\(\frac{1}{2}\)AH và IN = MK
Giúp mình vs!!!
1) Vì I là trung điểm của AB ; K là trung điểm của AC => IK là đường trung bình của Tam giác ABC
=> IK // BC hay tứ giác IKCB là hình thang
2) Vì I là trung điểm của AB ; N là trung điểm của BH => IN là đường trung bình của tam giác ABH
=> IN = \(\frac{1}{2}\) AH (1)
Vì K là trung điểm của AC ; M là trung điểm của HC => KM là đường trung bình của tam giác ACH
=> KM = \(\frac{1}{2}\) AH
Từ (1); (2) => \(IN=KM=\frac{1}{2}AH\)