Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9 cm, HC = 25 cm. Tính AH, AB, AC
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A , đường cao AH a, Biết AH = 6 cm , BH = 4,5 cm . Tính AB , AC , BC, HC b, Biết AB=6 cm , BH = 3cm . Tính AH , AC ,HC
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Biết AH = 12 cm, BC = 25 cm. Tính BH, HC, AB, AC (Vẽ hình mẫu)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Bài 1:
AH=12cm
AC=20cm
\(\widehat{ABC}=37^0\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9 cm, HC = 25 cm. a)Tính AH, AB, AC
b) gọi e,f là hình chiếu của h trên ab,ac . Tính Saefh
C) c/m 4 điểm a;e;h;f cùng nằm trên 1 đường thẳng
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(AH=\sqrt{9\cdot25}=15\left(cm\right);AB=\sqrt{9\cdot34}=3\sqrt{34}\left(cm\right);AC=\sqrt{25\cdot34}=5\sqrt{34}\left(cm\right)\)
b: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
ΔHAB vuông tại H có HE là đường cao
nên AE*AB=AH^2
=>AE*3căn 34=15^2
=>\(AE=\dfrac{75}{\sqrt{34}}\left(cm\right)\)
ΔHAC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>\(AF=\dfrac{15^2}{5\sqrt{34}}=\dfrac{45}{\sqrt{34}}\left(cm\right)\)
\(S_{AEHF}=AE\cdot AF=\dfrac{45\cdot75}{34}=\dfrac{3375}{34}\left(cm^2\right)\)
c: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
cho tam giác ABC vuông tại A có AH là đường cao . Biết BH= 9 cm , AB = 15 cm . tính BC , AC, HC , số đo góc ABC
Theo hệ thức lượng trong tam giác vuông ta có
\(15^2=9\cdot BC\)
\(BC=\frac{225}{9}=25\left(cm\right)\)
\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)
Theo định lý Pytago ta có
\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)
Ta có đặt \(\widehat{ABC}=\alpha\)
\(\sin\alpha=\frac{20}{25}=0,8\)
Tới đây mình chịu do kết quả nó hơi kỳ...
cho tam giác ABC vuông tại A , vẽ đường cao AH . Biết AB = 6,5 cm , BH = 2,5 cm, tính độ dài các đoạn thẳng AH ,HC ,BC, AC
Cho tam giác ABC vuông tại A vẽ đường cao AH. Biết AB=6 cm ,AC=8cm. Tính độ dài các đoạn thẳng BH,HC,AH
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8(cm)
ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, đường cao AH. Trong các đoạn thẳng sau AB, AC, BC, AH, HB, HC hãy tính độ dài các đoạn thẳng còn lại nếu biết:a) AB = 15 cm ; Bc = 25 cm.b) BH = 18 cm ; CH = 32 cm.c) AB = 6 cm ; BH = 3,6 cm.d) AC = 12 cm ; AH = 7,2 cm.e) AH = 7,2 cm ; AC = 9,6 cm) f) BC = 25 cm ; AH = 12 cm
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)