Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Nguyễn Thị Ngọc Trâm
Xem chi tiết
Nguyễn Huy Tú
13 tháng 7 2021 lúc 19:32

undefined

Nhan Nguyen
Xem chi tiết
Nguyễn Thị Hà Anh
1 tháng 8 2020 lúc 11:38

Sử dụng hệ thức lượng trong tam giác vuông thôi: 
AB*AC = AH*BC = 12*25 = 300 
AB^2 + AC^2 = BC^2 = 25^2 = 625 
giải hệ trên ta được : AB = 15, AC = 20 
AB^2 = BH*BC=> BH = AB^2/BC = 9 
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16 
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15 

Khách vãng lai đã xóa
Mai Nguyễn thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Võ Tuấn Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2023 lúc 10:38

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)

=>\(AH=\sqrt{9\cdot25}=15\left(cm\right);AB=\sqrt{9\cdot34}=3\sqrt{34}\left(cm\right);AC=\sqrt{25\cdot34}=5\sqrt{34}\left(cm\right)\)

b: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

ΔHAB vuông tại H có HE là đường cao

nên AE*AB=AH^2

=>AE*3căn 34=15^2

=>\(AE=\dfrac{75}{\sqrt{34}}\left(cm\right)\)

ΔHAC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>\(AF=\dfrac{15^2}{5\sqrt{34}}=\dfrac{45}{\sqrt{34}}\left(cm\right)\)

\(S_{AEHF}=AE\cdot AF=\dfrac{45\cdot75}{34}=\dfrac{3375}{34}\left(cm^2\right)\)

c: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

hakhanhlinh
Xem chi tiết
Dũng Lê Trí
12 tháng 12 2018 lúc 21:14

Theo hệ thức lượng trong tam giác vuông ta có 

\(15^2=9\cdot BC\)

\(BC=\frac{225}{9}=25\left(cm\right)\)

\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)

Theo định lý Pytago ta có

\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)

Ta có đặt \(\widehat{ABC}=\alpha\)

\(\sin\alpha=\frac{20}{25}=0,8\)

Tới đây mình chịu do kết quả nó hơi kỳ...

nguyễn quốc trung
Xem chi tiết
Long Nguyễn Vi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 21:27

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*10=6*8=48

=>AH=4,8(cm)

ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Lê Minh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 21:45

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)