cm đa thức sau âm vs mọi x thuộc R
-6-8x-16x^2
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
Chứng minh biểu thức sau luôn dương với mọi x
P=16x\(^2\) + 8x + 2
\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)
\(P=16x^2+8x+2\)
\(=\left(16x^2+8x+1\right)+1\)
\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)
\(=\left(4x+1\right)^2+1\)
Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)
hay \(P\) luôn dương với mọi \(x\).
ai có giải bài tìm x
bài tập:tìm x,biết:
a)16x^2-9(X+1)^2=0
b)x^4+8x^2-9=0
và 1 câu của bài pt các đa thức sau thành nhân tử:
b)x^4+5x^2-6
mong mọi người giúp mình
b)x^4+5x^2-6
=x4-x3+x3-x2+6x2-6x+6x-6
=x3(x-1)+x2(x-1)+6x(x-1)+6(x-1)
=(x-1)(x3+x2+6x+6)
=(x-1)[x2(x+1)+6(x+1)]
=(x-1)(x+1)(x2+6)
Bài 1 : Rút Gọn Đa thức sau
3(2x+5)2-3(4x+1).(1-4x)
Bài 2 : Chia Đa thức Sau cho đơn Thức
( x4-2x3+4x2-8x):(x2+4)
Bài 3 : Chứng minh rằng biểu thức x2-xy+y2 không có giá trị âm vs mọi giá trị của x và y
Bài 4 : Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
phân tích các đa thức sau thành nhân tử
a, 4x^4 + 4x^3 - x^2 - x
b, x^6 - x^4 - 9x^3 + 9x^2
c, x^4 - 4x^3 + 8x^2 - 16x + 16
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
thu gọn đa thức sau rồi tìm bậc của nó
A (x)=43x-(52x^2+34x^2-8x^4)-(8x^4+16x^3-42x^2+43x)+19
\(A\left(x\right)=43x-\left(52x^2+34x^2-8x^4\right)-\left(8x^4+16x^3-42x^2+43x\right)+19\)
\(\Leftrightarrow A\left(x\right)=43x-86x^2+8x^4-16x^3+42x^2-43x+19\)
\(\Leftrightarrow A\left(x\right)=-16x^3-44x^2+19\)
Bậc là: 3
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
chứng minh
a) đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x
b) đa thức g(x)=-x^2+7x-43 luôn âm với mọi x
ai làm nhanh chi tiết đúng thì sẽ dc tick
a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x
ta có 2x^2 luôn dương
25 là số dương
Th1:8x là số âm
Suy ra f(x)2x^2-(-8x)+25(dpcm)
Th2:8x là số dương
Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0
Ko chắc vì làm theo suy nghĩ của t :V
cho mk sửa lại:
\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)
\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)
\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)
Vậy....
Cho f(x) là 1 đa thức bậc 2 biết f(5)=f(-5).Cm f(x)=f(-x) với mọi x thuộc R. Mọi người trả lời hộ với:)