Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
469 cong ty CP
Xem chi tiết
Lê Nguyễn Phương Anh
Xem chi tiết

\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)

Toru
2 tháng 1 lúc 20:54

\(P=16x^2+8x+2\)

\(=\left(16x^2+8x+1\right)+1\)

\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)

\(=\left(4x+1\right)^2+1\)

Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)

hay \(P\) luôn dương với mọi \(x\).

bùi xuân sơn
Xem chi tiết
Lyzimi
13 tháng 8 2016 lúc 13:32

b)x^4+5x^2-6

=x4-x3+x3-x2+6x2-6x+6x-6

=x3(x-1)+x2(x-1)+6x(x-1)+6(x-1)

=(x-1)(x3+x2+6x+6)

=(x-1)[x2(x+1)+6(x+1)]

=(x-1)(x+1)(x2+6)

Nguyễn Minh Anh
Xem chi tiết
Trần Linh
Xem chi tiết
Dũng Lê Trí
19 tháng 8 2019 lúc 16:57

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Dũng Lê Trí
19 tháng 8 2019 lúc 17:02

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)

le van hoan
Xem chi tiết
Nguyễn Văn Lâm ( ✎﹏IDΣΛ...
7 tháng 8 2021 lúc 10:25

\(A\left(x\right)=43x-\left(52x^2+34x^2-8x^4\right)-\left(8x^4+16x^3-42x^2+43x\right)+19\)

\(\Leftrightarrow A\left(x\right)=43x-86x^2+8x^4-16x^3+42x^2-43x+19\)

\(\Leftrightarrow A\left(x\right)=-16x^3-44x^2+19\)

Bậc là: 3

Khách vãng lai đã xóa
Doan Nam Phuong Dung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Khách vãng lai đã xóa
haiha
Xem chi tiết

a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x

ta có 2x^2 luôn dương

25 là số dương

Th1:8x là số âm

Suy ra f(x)2x^2-(-8x)+25(dpcm)

Th2:8x là số dương

Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0

Ko chắc vì làm theo suy nghĩ của t :V

cho mk sửa lại:

\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)

\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)

\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)

Vậy....

Thái Phan Huy
Xem chi tiết