Cho tam giác ABC vuông tại A,góc C=30o,BC=10cm Tính AB,AC
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Giải tam giác vuông ABC vuông tại A biết :
a, AB=5cm , góc B=30o
b, AC=7cm , góc B=40o
c, BC=10cm , AB=4cm
Cho tam giác ABC vuông tại A, AB= 10cm, góc B= 60°. Tính AC,BC, góc C
Xét tam giác ABC vuông tại A
Áp dụng hệ thức giữa cạnh và góc
\(AC=tanB.AB=10\sqrt{3}\)cm
AD hệ thức : \(AB=cosB.BC\Rightarrow BC=\dfrac{AB}{cosB}=20\)cm
Do ^B ; ^C phụ nhau => ^C = ^A - ^B = 300
: Cho tam giác ABC vuông tại A, AC= 8cm, AB = 6cm, BC = 10cm, đường cao AH
a. C/m tam giác ABC vuông tại A
b. Tính AH, BH, CH, góc C, góc B.
c. Trên BC lấy điểm M. Gọi hình chiếu của M trên AB, AC lần lượt là P, Q.
+ C/m PQ = AM.
+ Hỏi M ở vị trí nào thì PQ nhỏ nhất?
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Cho tam giác ABC vuông tại A có BC = 10cm , góc C = 30° .Tính AB,AC,AH,HB
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB=10\cdot\dfrac{1}{2}=5\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=2.5\left(cm\right)\\AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
Cho tam giác ABC vuông tại A, có:
a. AB = 10cm, BC = 17cm. Tính AC, góc B, góc C.
b. AC = 24cm, góc B = 37 độ. Tính góc C, AB và BC.
cho tam giác abc có ab=6cm,ac=8cm,bc=10cm. Kẻ ah vuông góc vs bc tại h 1 chứng minh tam giác abc vuông tại a 2 tính diện tích tam giác abc 3 tính AH
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
Ta có: BC2=102=100
AB2+AC2=62+82=100
Vậy BC2=AB2+AC2
Xét ΔABC có:
BC2=AB2+AC2
Nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: ΔABC vuông tại A(gt)
Nên
Cho tam giác ABC vuông tại A có AB>AC
a.So sánh góc B và góc C . Tính độ dài cạnh AB biết BC=10cm,AC=6cm
b.Trên cạnh BC lấy điểm D sao cho BD=AB.Đường thẳng vuông góc với BC tại D cắt AC ở E
Chứng minh rằng tam giác ABE=tam giác DBE và AE<CE
a, Ta có: AB là cạnh đối diện của góc C.
AC là cạnh đối diện của góc B.
Mà AB>AC, suy ra:
góc B< góc C.
Áp dụng Đ. L. py-ta-go vào tg ABC vuông tại A, có:
BC2=AC2+AB2
=>102=62+AB2
=>AB2=102-62
=100-36
=64.