Giải phương trình nghiệm nguyên:
a, \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
b, \(x^4-2y^2=1\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)
Đk: \(x+2y+1\ge0,x+4y+4\ge0\)
\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)
\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\)
*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)
Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).
Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.
*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .
Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{2x^2y^2-x^4y^4}=y^6+x^2\left(1-x\right)\\\sqrt{1+\left(x+y\right)^2}+x\left(2y^3+x^2\right)\le0\end{cases}}\)
Giải phương trình nghiệm nguyên: \(x^2y^2\left(x+y\right)+x=2+y\left(x+1\right)\).
Tìm pass Wifi: biết \(\begin{cases}\log_4\left(x^2+y^2\right)-\log_4\left(2x\right)+1=\log_4\left(x+3y\right)\\\log_4\left(xy+1\right)-\log_4\left(4y^2+2y-2x+4\right)=\log_4\left(\frac{x}{y}\right)-1\end{cases}\)
Giải hệ phương trình trên tìm nghiệm x;y sau đó ghép thành số \(\overline{xyxyxy}\) để biết pas Wifi
Giải các hệ phương trình sau
\(1)\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{2}\left(8y^2+8y+1\right)\\4\left(x^3-8y^3\right)-6\left(x^2+4y^2\right)+3\left(x+2y\right)-1=0\end{matrix}\right.\)
\(2)\left\{{}\begin{matrix}3\sqrt{17x^2-y^2-6x+4}+x=6\sqrt{2x^2+x+y}-3y+2\\\sqrt{3x^2+xy+1}=\sqrt{x+1}\end{matrix}\right.\)
\(3)\left\{{}\begin{matrix}x^3+\left(2-y\right)x^2+\left(2-3y\right)x=5\left(x+1\right)\\3\sqrt{y+1}=3x^2-14x+14\end{matrix}\right.\)
\(4)\left\{{}\begin{matrix}4x^2=\left(\sqrt{x^2+1}+1\right)\left(x^2-y^3+3y-2\right)\\x^2+\left(y+1\right)^2=2\left(1+\dfrac{1-x^2}{y}\right)\end{matrix}\right.\)
\(5)\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x-1=0\\y^2+7y-17=9x+2\left(x+6\right)\sqrt{5-2y}\end{matrix}\right.\)
\(6)\left\{{}\begin{matrix}2x^2+3=4\left(x^2-2yx^2\right)\sqrt{3-2y}+\dfrac{4x^2+1}{x}\\\left(2x+1\right)\sqrt{2-\sqrt{3-2y}}=\sqrt[3]{2x^2+x^3}+x+2\end{matrix}\right.\)
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+2y^2+xy^2=2+x-2x^2\\4y^2=\left(\sqrt{y^2+1}+1\right)\left(y^2-x^3+3x-2\right)\end{matrix}\right.\)
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
giải hệ phương trình \(\hept{\begin{cases}3x^2+xy-4y+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{cases}}\)